Instructor:
Justin Hsia

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Virtual Memory I

CSE 351 Autumn 2022

CSES351, Autumn 2022

Armin Magness
Clare Edmonds
Effie Zheng
Kristina Lansang
Vincent Xiao

Teaching Assistants:
Angela Xu Arjun Narendra
Assaf Vayner Carrie Hu
David Dai Dominick Ta
James Froelich Jenny Peng
Paul Stevans Renee Ruan
208! To DISARM THE BOMB,
v SIMPLY ENTER A VALID
‘rDU' USE UNIX! tar COMMAND ON YOUR
FIRST TRY. NO GOOGLING
Cmf_‘ eIl YoU HAVE I SECONDS.

ﬁa

e _

http://xkcd.com/1831/

http://xkcd.com/1831/

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

Relevant Course Information

+» hw21 due Friday (11/25)
+» hw22 due next Wednesday (11/30)

= Another double-lecture hw

+» Lab 4 due Monday (11/28)

+ Virtual section this week on virtual memory (videos)
+ Office hour changes will be posted on Ed tonight

+» Looking ahead
" Final Dec. 12-14, regrade requests Dec. 18-19
" Check your grades in Canvas as we go

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

A System Using Physical Addressing

Main memory

0:

1:

2:

Physical address (PA) 3:

CPU —> 4:
6:

7:

8:

M-1:

Data (int/float)

+ Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
CPU i > MMU (P ﬁ>4:
0x4100 2 I
/VL“lsd;) r-bh 6:
7:
8:
Memory Management Unit
M-1

Data (int/float)

+ Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Why Virtual Memory (VM)?

Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk
- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed
Simplifies memory management for programmers

= Each process “gets” the same full, private linear address space

Isolates address spaces (protection)
" One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information

- Different sections of address spaces have different permissions

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Ii

Reading Review

+» Terminology:
= Paging: page size (P), page offset width (p) virtual page
number (VPN), physical page numbers (PPN)

= Page table (PT): page table entry (PTE), access rights (read,
write, execute)

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Review Questions

+» Which terms from caching are most similar/analogous
to the new virtual memory terms?

" page size
bloc,k Size

" page offset width
Colodk) oflet wi Aot

2

" virtual page number VA: \ virtel e mmber(pme ofiet|
Hod’_ num ber PA : I Olodcnumber | sthaef|

" physical pagenumber _—— pp. g A |
block. pumbes o cache set o

= page table entry | A physical memory
coche line : ddta of wierst + manageme'ﬂl bits Peno

= access rights ‘ PPN 2
moncgye ment bﬂ' S V;t;ae I’P!\)l

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

VM and the Memory Hierarchy

% Think of memory (virtual or physical) as an array of bytes, now
split into pages - w{% P
= Pages are another unit of aligned memory (size is P = 2P bytes)
= Each virtual page can be stored in any physical page (no fra§ment?t|on')

hb \,J6~ S («LC

+ Pages of virtual memory are usually stored in physical men'fory,
but sometimes spill to disk

Virtual memory Physical memory
0

0 Empty PPO
VP O | Unallocated , PP 1
VP 1 "" "Mmemn Empty
in disk

Unallocated \ / Empty

PP 2mP-1

\ “Swap Space”

(s,dd) so3ed |eaisAyd

Virtual pages (VP's)

VP 2mp-1

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Memory Hierarchy: Core 2 Duo ot drawntosscale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~qmp ! ~8 GB ! ~500 GB
L2 Qs Mai -
L1 ck S aln
unified |¢——= peocs DlSk

5> I-cache Memory -
a cache
. 32 KB 4
L1 ‘ \ ' ¥

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

Virtual Memory Design Consequences

+ Large page size: typically 4-8 KiB or 2-4 MiB
® Can be up to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

Fully associative (physical memory is single set)
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS

" Too complicated and open-ended to be implemented in hardware

« Write-back rather than write-through (teade Sty pages)
= Really don’t want to write to disk every time we modify memory

= Some things may never end up on disk (e.g., stack for short-lived
process)

10

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

Why does VM work on RAM/disk?

+» Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

% The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

= |f (working sets of all processes > physical memory):

. Ehrashin\g:) Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

11

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Ii

CSES351, Autumn 2022

Virtual Memory (VM)

+» Overview and motivation

» VM as a tool for caching

» Address translation

+» VM as a tool for memory management
» VM as a tool for memory protection

12

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Address Translation

How do we perform the virtual
— physical address translation?

0:
CPU Chip 1:
Virtual address Physical address g
(VA) \ (PA) :
CPU > MMU —> 4:
0x4100 Vo ox4 c.
= ;
6:
7:
8:
Memory Management Unit
M-1

Main memory

CSES351, Autumn 2022

Data (int/float)

13

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Address Translation: Page Tables
VPN width n-p >we have pr(mje; in VA space peye size P bytes

. . — _T) i
«» CPU-generated address car’Lbe split into: & p= oy, P b
'V\-P |‘|’j P bits

- /\/_/—_\
n-bitaddress: | Virtual Page Number | Page Offset
aha‘ij.r +o- | ID‘OC\(Aurber | block ot et]"ﬁ)f C6~le'€.5

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g., Valid, Dirty, access rights)

& Has an entry for every virtual page

14

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Page Table Diagram

is page in RAM? Physical memory ” hys’g’éf}"ge #
(DRAM) j
Page Table
Virt\L;al page # (DRAM) VP 1 PPO
P
N \ Valid PPN/Disk Addr / VP2 PP 1
@(Aha\\\x&\h@) ‘)RJQPTE 0: 9_ O nu” // VP 7 PP 2
PTEL: 1| 1 e
PTE2: 2[1 10/4 VP 4 PP3
PTE3: 3| 0 |k} codr ® ~ .
@Paje m RAM PTE4: 4] 1 2 e— << Virtual memory
PTES: 5| O null A T ~~. (DRAM/disk)
@P“B" on disk PTE6: 6| O |disk sddv & .~ R
PTE7: 7] 1 2 & T~ ‘~~\\
n- \\\\ \\\\\
Eaﬂe falle hos 7 f er\‘f’r[e_(.’ R » VP 3
+~ Page tables stored in physical memory ~~-__
" Too big to fit elsewhere — managed by MMU & OS RREYON VP e

+» How many page tables in the system?

" One per process

15

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Page Table Address Translation

c\nam ed on Yo

/
CP 1 4 -fex'l' st '
o Virtual address (VA) /
Page table ,
base register Virtual page number (VPN) ‘ Virtual page offset (VPO) n \rJf}J
| (PTBR) /
’/
'cal)
Page tablgf)e;{js:jress Page table
for process >Va/id PPN
Jolde o VPN ATy
Valid bit = 0:
page not in memory €
(page fault)
v / v

Physical page number (PPN) | Physical page offset (PPO) m \oH’I

In most cases, the MMU can Physical address (PA) /
perform this translation
without software assistance

16

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I CSE351, Autumn 2022

Polling Question

2 Hozw many bits wide are the following fields?

= 16 KiB pages
- %ﬁ—bzilt;virtual addresses n =4¥ Lits &> 256 TiB viclua! memory
= 16 GiB physical memory m =4 bits

= Vote in Ed Lessons

VPN PPN

|

p= |4 kifs

VA: [vew | Po |

VPN = n-p= Y Lits &= 23L| paged n Virtusl addcess Space

Ph-| PPN | Po .
PPN = M'P = 20 L?\s (——9 2 ‘mﬁej n P\y:?(a‘ aJ()rQSJ S'oaCe_

17

YA UNIVERSITY of WASHINGTON

Page Hit

L22: Virtual Memory I

CSES351, Autumn 2022

+» Page hit: VM reference is in physical memory

Virtual address

Page Table (DRAM) Physical memory
Valid PPN/Disk Addr (DRAM)
PTEO| O null — VP 1 PPO
1 VP 2
Y 1 VP 7 PP2
: VP4 PP 3
0
0 Virtual memory
Q[1 (DRAM/disk)

Virtual Addr:

(M) vPN:

OXOO7/1 b Physig%IAddr:
VEN / ottset~_°

‘7_

Example: Page size =4 KiB=7'"B <= p=I2kits= 3 hex Jigits

OxZi%

P—

@pPpPN:

2

VP 3

VP 6

18

YA UNIVERSITY of WASHINGTON

Page Fault

L22: Virtual Memory I

CSE351, Autumn

+ Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [0 null . vp1 PPO
I 1 — | - VP 2
211 o—
_ VP 7
Bl «—)
T — > VP 4 PP 3
0 null
0 e DY Virtual memory
PTE7 | 1 o . R (DRAM/disk)

Example: Page size = 4 KiB

Provide a virtual address request (in hex) that

results in this particular page fault:
L\~~~ Y

Fhyee

Virtual Addr: | O»08> / 000

hex ,)(\5?\1 heve

VP 3

VP 6

2022

19

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il CSE351, Autumn 2022

Reminder: Page Fault Exception

User writes to memory location int a[10001;
. int main () {
That portion (page) of user’s memory a[500] = 13;
is currently on disk }
P e —
80483b7: c7 05 10 9d 04 08 0d movl $Oxd(_0x8049d1§)
User code OS Kernel code

exception: page fault _ handle_page_fault:

| ' reate page and
Mload into memory

Page fault handler must load page into physical memory

Returns to faulting instruction: mov is executed again!

= Successful on second try
20

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Handling a Page Fault

+ Page miss causes page fault (an exception)

Virtual address

CSES351, Autumn 2022

Page Table (DRAM) Physical memory
Valid PPN/Disk Addr (DRAM)
PTE0 [0 null] wea PP O
1 — | > VP 2
1 o—
VP 7
N . /
1 pa— > VP4 PP 3
0 null - Virtual memory
0 e S (DRAM/disk)
PTE7 | 1 o < _ ..
Y T VP 3
Ta VP 6

21

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Handling a Page Fault

+» Page miss causes page fault (an exception) PP 2
+ Page fault handler selects a victim to be evicted (here VP 4)

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO| O null — VP 1 PPO
1 o— | > VP 2
1 o—
VP 7
> 0 N /
1 pa—— ” VP 4 PP 3
0 null S Virtual memory
0 e AN O © (DRAM/disk)
PTE7 [1 o < _ Ot MEP,Z(
\\\ VP 3 Q)urge
S oack. i
Sa VP 6 divty

22

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

Handling a Page Fault

+» Page miss causes page fault (an exception)
+ Page fault handler selects a victim to be evicted (here VP 4)

U\pd ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null — VP1 PPO
1 — | > VP 2
1 o—
VP 7
> L - —] VP 3 PP 3
Thvalideted > 0 e
0 null ~~ Virtual memory
0 « < (DRAM/disk)
PTE7 [1 So TS

S0 VP 4
4 VP 6

23

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Handling a Page Fault

+~ Page miss causes page fault (an exception)

+~ Page fault handler selects a victim to be evicted (here VP 4)

+» Offending instruction is restarted: page hit!

CSES351, Autumn 2022

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO| O null — VP 1 PPO
/ 1 o— | > VP 2
hit! |2 > VP 7
> 1 [/
VP 3 PP 3
0 e
0 null >~ Virtual memory
0 e < (DRAM/disk)
PTE7 [1 So TS

VP 4

VP 6

24

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Ii

CSES351, Autumn 2022

Virtual Memory (VM)

+» Overview and motivation

» VM as a tool for caching

» Address translation

+» VM as a tool for memory management
» VM as a tool for memory protection

25

YA UNIVERSITY of WASHINGTON L22: Virtual Memory II CSE351, Autumn 2022

VM for Managing Multiple Processes

+ Key abstraction: each process has its own virtual address space
" |t can view memory as a simple linear array
+» With virtual memory, this simple linear virtual address space

need not be contiguous in physical memory
® Process needs to store data in another VP? Just map it to any PP!

0 0
Virtual VT Physical
Address VP 2 —[[PP2 < Address naccessile
Space for | Space 4y Process 2
Pro7gess 1: . (DRAM)

Address
translation

separate virtue!

(ddvess spal€s and
page +ables 0

3 Virtual
Address
Space for
Process 2:

~—1 (e.g., read-only
@K' library code) shared

> PP8

VP 1
VP 2

N-1 M-1 26

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L22: Virtual Memory Il

Simplifying Linking and Loading

+ Linking

Kernel virtual memory

= Each program has similar virtual
address space

User stack
(created at runtime)

" Code, Data, and Heap always
start at the same addresses

’
f

Memory-mapped region for
shared libraries

+ Loading

= execve allocates virtual pages
for . text and .data sections

T

& creates PTEs marked as invalid

Run-time heap

(created by matlac)

" The .text and .data sections
are copied, page by page, on

Read/write segment
.data, .bss)

demand by the virtual memory

system
0x400000

d-onl
(Nnit, .text, .rodata)

0

Unused

invisible to
user code

I Memory

+«——3Irsp
(stack
pointer)

«—— brk

Loaded
from the

executable
file

27

YA UNIVERSITY of WASHINGTON

CSES351, Autumn 2022

L22: Virtual Memory I

VM for Protection and Sharing

+» The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes

= Sharing: map virtual pages in separate address spaces to the same
physical page (here: PP 6)

" Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

Virtual
Address
Space for
Process 1:

Virtual
Address
Space for
Process 2:

0

N-1

N-1

e 0
LN
VP 1)
VP 2 , —s[pp2
Address g
translati
_> PP8
VP 1
VP 2 —
pPAIC
table 2.
M-1

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

28

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Memory Protection Within Process

+ VM implements read/write/execute permissions

e.i\'rm

" Extend page table entries with permission bits manﬁgiv;\em*
" MMU checks these permission bits on every memory access

- |If violated, raises exception and OS sends SIGSEGV signal to process

segmentation fault X X ,
(seg) — Physical
Process 1: Valid fREAD WRITE E@ PPN Address Space
VP O: Yes Yes No No PP 6
VP1: | Yes Yes No Yes PP 4
VP2: | Yes | Yes | Yes | No | PP2 i
. PP 4
[]
[]
PP 6
Process 7: Valid READ WRITE EXEC PPN
PP8
VP O:
Yes Yes Yes No PP9 —s " ppg
VP 1: Yes Yes No No PP 6
VP 2: Yes Yes Yes No PP 11 —> PP 11

29

CSES351,

Autumn 2022

YA UNIVERSITY of WASHINGTON

L22: Virtual Memory I

Memory Review Question

+» What should the permission bits be for pages from

the following sections of virtual memory?

Section Read Write Execute
Stack]] O
Heap ! | O
- _->Static Data 1] O
n < Literals 1 O (constutt) O
Instructions 1 O (5 1 ff:l\aifrﬁ(:ﬁc)

30

