YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

WHEN WL WE FORGET?
- BASED oN S (ENSUs GUREAV
Memory Allocation | oML PO FRIECTAS
WE DON'T REPEN
CSE 351 Autumn 2022 EVENTS FROM BEFORE. AGE. 5 0R 6
BY THIS | THE MAJORTY OF AMERICANS
YEAR: | WAL BE TOOYONG TO REMEMBER:
Instructor: 206 | RETURN OF TRE JE2) RELEPGE
Justin Hsia 2017 | THE FIRST APRE MACNTESH
2018 | New (OxKE
Teaching Assistants: 00 | CHAULENGER
Angela Xu 2020 | CHERNOBYL
Ariun N d 21 | BAK MONDAY
rjur\ arendra 222 | Te PRES
Armin Magness 273 | TE Berun WAL
Assaf Vayner 2024 | HAMMERTVE
Carrie Hu 2025 | THE SOVIET UNON
Clare Edmonds 20% | THE LARIOTS
David Dai 2027 | [ORENA BOBRITT
Dominick Ta 2028 | THE RRREST GUMP RELEPSE.
Effie Zheng 217 | HE MMDHN GENOCIDE
James Froelich 2030 | O SMPSEN'S TRIAL
Jenny Pen 238 | ATIME BEFORE FACERODK,
. y 8 039 | VRYs I JovE THE Ds
Kristina Lansang 2000 | W KATRINA,
Paul Stevans 2041 | TE PANET P
Renee Ruan 2042 | THE FIRST iFHONE
Vincent Xiao Adapted from soq7 | AYTHNG BYBARRASGING
https://xkcd.com/1093/ YOU DO ToDAY

https://xkcd.com/627/

YA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Relevant Course Information

CSES351, Autumn 2022

+» hw22 due Wed, hw24 due Fri, hw25 due next Wed

+» Lab 4 due tonight, Lab 5 released Wed

« Final Dec. 12-14

Structure will be very similar to the midterm

Not cumulative, focused on post-midterm material
Final review section on 12/8

Final review session planned for Zoom on 12/9
Regrade requests Dec. 17-18

YA UNIVERSITY of WASHINGTON L24: Memory Allocation |

CSES351, Autumn 2022

The Hardware/Software Interface

+ Topic Group 3: Scale & Coherence

" Caches, Processes, Virtual Memory,
Memory Allocation

/\

Even more applications

Applications

Programming Languages
& Libraries

Operating System

| Hardware I
Transistors,

istors, Gates, Digital Systems

Physics

+» How do we maintain logical consistency in the face of

more data and more processes?

*" How do we support control flow both within many
processes and things external to the computer?

" How do we support data access, including dynamic requests,

across multiple processes?

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Reading Review

+» Terminology:
= Dynamically-allocated data: malloc, free

= Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

" Heap fragmentation: internal vs. external

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Multiple Ways to Store Program Data

<+ Static global dataf—\
pint array[1024];

Fixed size at compile-time

" Entire lifetime of the program | void foo(int n) {

int tmp;
(loaded from executable) = i
’/?1nt local array[n];

= Portion is read-only
(e.g., string literals) LRIET Gyl =

(int*) malloc (n*sizeof (int)) ;

+ Stack-allocated data)
" Local/temporary variables

Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

< Dynamic (heap) data
= Size known only at runtime (i.e., based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation

Dynamic memory allocation
" |ntroduction and goals
= Allocation and deallocation (free)

*

" Fragmentation

Explicit allocation implementation

*

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

+ Implicit deallocation: garbage collection
» Common memory-related bugs in C

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Dynamic Memory Allocation (Review)

+» Programmers use dynamic memory allocators to
acquire virtual memory at run time User stack

" For data structures whose size f ‘
(or lifetime) is known only at runtime Heap (viamalloc)

] Manage the heap of a process' Uninitialized data (.bss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

+ Types of allocators

xplicit allocator: programmer allocates and frees space
- Example: mallocand freeinC

= Implicit allocator: programmer only allocates space (no free)
- Example: garbage collection in Java, Caml, and Lisp

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages heap blocks within pages

- (Larger objects handled too; User stack

ignored here) f ‘ ,
7 Top of heap

(brk ptr)

Uninitialized data (.bss)
Initialized data (. data)
Program text (. text)

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Allocating Memory in C (Review)

«» Needto #include <stdlib.h>

+ vold* malloc(size t size)

= Allocates a continuous block of size bytes of juninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL
indicates a failed request

. Typically 0 an 8-byte (x86) or 16-byte (x86-64) boundary

- Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+» Good practices:

" ptr = (int*) malloc(n*sizeof (int)) ;

- sizeof makes code more portable

- void* isimplicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Allocating Memory in C (Review)

«» Needto #include <stdlib.h>

+ vold* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL
indicates a failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+» Related functions:

" void* calloc(size_t nitems, size_ t size)
- “Zeros out” allocated block

" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t increment)

Used internally by allocators to grow or shrink the heap
10

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Freeing Memory in C (Review)

+ Needto #include <stdlibj; h> ; s
-] doesv\' C}\ansc' l\e FW\ er.
2 VOld free (VOld* E{)_ (nou Pdn‘\.s to deallo(aer MGMDVY)

= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned bym/c/realloc
(i.e., beginning of the block), otherwise system exception raised

" Don’t call free on a block that has already been released
" No action occurs if you call free (NULL)

11

CSES351, Autumn 2022

W UNIVERSITY of WASHINGTON L24: Memory Allocation |
lj-gj-\,eq{/«d
Memory Allocation E le in C*E gzl
Y ocation cXampie in K =
P {l / ‘/
void foo (int .1?1, int ?n) { _»W\;\w”z(g l‘-\l
int i, *p; 1 _—
@ p = (int*) malloc(n*sizeof (int)); /* allocate blockofnints */ r{+m
if (p == NULL) { /* check for allocation error */
perror ("malloc") ; € prints message relatek o ereno
exit (0) ;
}
for (i=0; i<n; 1i++) / * initialize int array */
pli] = 1i;
/* add space for m ints to end of p block */
) p = (int*) realloc(p, (ntm)*sizeof (int)) ;
if (p == NULL) { I /* check for allocation error */
perror ("realloc");
exit (0) ;
}
for (i=n; 1 < n+m; i++) /* initialize new spaces */
pli] = 1i;
for (i=0; i<n+m; 1i++) /* print new array */
printf ("%d\n", plil);
free (p); /* freep */
}2

12

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

" Allocations will be in sizes that are a multiple of words
(i.e., multiples of 8 bytes)

" Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook @

Hea.p:
\ v J ; ,_/
Allocated block Free block
(4 words) (3 words)
12 Lytes 24 bytes Free word

Allocated word

13

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

= 8-byte word

Allocation Example

pl = malloc (32)

p2 = malloc (40)

p3 = malloc (48)

free(p2)

—_—— e

‘§ ,&QPQ\A)’ anNn G\HOCO\TQW\/\

placemen Po\?cy

p4 = malloc (16)

14

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Implementation Interface (Review)

+ Applications
" Canissue arbitrary sequence of malloc and free requests
" Must never access memory not currently allocated

" Must never free memory not currently allocated
« Also must only use free with previously malloc’ed blocks

+ Allocators
= Can’t control number or size of allocated blocks
"= Must respond immediatelytomalloc (cantk rearder or bictfer)
= Must allocate blocks from free memory Cblocks cant overlap)
= Must align blocks so they satisfy all alignment requirements
& Can’t move the allocated blocks (dedecgmetation ne \me d)

oosth Vored your poners’

15

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Performance Goals (Review)

+» @oals: Given some sequence of malloc and free
requests Ry, R4, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

1) Throughput
= Number of completed requests per unit time

= Example:

- 1f 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

16

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R; has completed, the aggregate payload P
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
= Defined as U;, = (ma}(x P;)/H;, after k+1 requests
<

" Goal: maximize utilization for a sequence of requests

" Why is this hard? And what happens to throughput?
Pack fast or pack +|'5H?

17

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Fragmentation (Review)

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

" Two types: internal and external

+» Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g., in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

18

L24: Memory Allocation | CSE351, Autumn 2022

YA UNIVERSITY of WASHINGTON

Internal Fragmentation

+» For a given block, internal fragmentation occurs if

payload is smaller than the block

block
A

N
Internal Internal
fragmentation ~ | payload : fragmentation

—
e
+ Causes: P— — J ,’7\

= Padding for alignment purpos& e
"= QOverhead of maintaininglheap dafggtructuresl(inside block,

outside payload)

= Explicit policy decisions (e.g., return a big block to satisfy a
small request) faster Fhraghpat nst indidually size evey block

+» Easy to measure because only depends on past
requests

19

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

= 8-byte word

External Fragmentation

« For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
" That is, the aggregate payload is non-continuous

= (Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc (32)

p2 = malloc (40)

p3 = malloc (48)

free(p2)

P4 = malloc (48) Oh no! (What would happen now?)

« Don’t know what future requests will be

= Difficult to impossible to know if past placements will become

problematic
20

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Polling Question

« Which of the following statements is FALSE?
= Vote in Ed Lessons

A.

B.

Temporary arrays should not be allocated on the
Heap showd allocate on the Stack

malloc returns an address of al| block that is
. . ollocdtes onlys no intiali N
filled with mystery data® ™ "’ fializod

Peak memory utilization is a measure of both

. . ceqadle (PN
internal and external fragmentation @:if, ‘:Z

. An allocation failure will cause your program to
StOp Jus‘f returns NULL

We’re lost...

21

YA UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSES351, Autumn 2022

Implementation Issues

<+ How do we know how much memory to free given
$J Justa pointer?
2

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating

a structure that is smaller than the free block it is
placed in?

Ne)(‘t' ‘ec"}vﬂfi

+» How do we reinsert a freed block into the heap?

22

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or header

——

= Requires an extra word for every allocated block

cefurneh oddress points

€ b start of paylad

p0
!
40

block size data

(nd size of poyhsd)

0 = malloc (32)

free (p0)

Ls e header o P8,
Leee Ht mudh ¢ pace

23

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

= 8-byte word (free)

Keeping Track of Free Blocks _ &-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

— — N =

-~ ’—~\
- ~ P - ~
- ~_ SNa " S a

40 32 48 i3

o

add pbird'ei’
2) Explicit free list among only the free blocks, using pointers)

rend (\ inked List!
Pw#gr
40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
24

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

address is mubtige of §=0b1000
e o o e.g., with 8-byte alignment,
|mp|ICIt Free LIStS possible values for size:
L werd 0 00001000 = 8 bytes
NG 00010000 = 16 bytes
+ For each block we need: size, is-allocated? | 00011000 - 24 bytes

® Could store using two words, but wasteful -4

+ Standard trick
= If blocks are alighed, some low-order bits of size are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading size, must remember to mask out this bit!

8 bytes
A
o =
Formatof (sz [aDa=1: allocated block If x is first word (header):
allocated and a=0: free block gor ¥
free blocks: x = size | a;
payload size: block size (in bytes)

payload: application data
optional (allocated blocks only) size = x & ~1;
padding

25

YA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2022

Header Questions

+» How many “flags” can we fit in our header if our

allocator uses 16-byte alignment?
all mwl-l'qo'cs st 16 hae lowet 4 bE 45 zewm . = 167 Ob (000D

A flagg

—

+» If we placed a new “flag” in the second least
significant bit, write out a C expression that will

extract this new flag from header
toov s‘feF3: D mask ot bt @
D shift it LSRR O

/ N
(hewler }:7-) > 1 (Ineaécr > _']_) g._ 1

26

