YA UNIVERSITY of WASHINGTON

L25: Memory Allocation I CSE351, Autumn 2022

Memory Allocation li

CSE 351 Autumn 2022

Instructor:
Justin Hsia

Teaching Assistants:
Angela Xu

Arjun Narendra
Armin Magness
Assaf Vayner
Carrie Hu

Clare Edmonds
David Dai
Dominick Ta
Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang

MY ACCESS To RESOURCES ON [SUBJTECT] OVER TIME:

1985 1990 1995 2000 2005 2010 2015 2070

BOOK. ON
SUBTECT
[suBTECT].PDF
SITE GOES POWN, BACKEND
[SUBTECT] \WJEB DATABASE DATA NOT ON Pfaﬂma
[5uBTECT] MOBLE APP ﬂ’é‘&m m?a
(LOcAL UNIVERSITY PROJELT)
[SUBTELT] ANALYSIS SOFTLIARE |-—§5' icwm 'Lfm%
INTERACTIVE [6UBTECT] CD-ROM oG (Do E AT EIER
LIBRARY MICROFILM
[SUBTECT] COLLECTION

Paul Stevans
Renee Ruan
Vincent Xiao

IT¥ UNSETTUNG TO REALIZE HOW QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WJITHOUT ONGOING LIORK To MAINTAIN THEM.

http://xkcd.com/1909/

http://xkcd.com/1444/

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Ii

CSES351, Autumn 2022

Relevant Course Material

+» hw24 due Friday, hw25 due next Wednesday (12/7)
+» Lab 5 due next Friday (12/9)

" The most significant amount of C programming you will do
in this class — combines lots of topics from this class:
pointers, bit manipulation, structs, examining memory

" Understanding the concepts first and efficient debugging
will save you lots of time

" Light style grading

+~ Final Exam: 12/12-14

" Final review section on 12/8, final review session on 12/9

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Ii

Reading Review

+» Terminology:
= Allocation strategies: first fit, next fit, best fit
= Allocating a block: splitting, minimum block size
" Freeing a block: coalescing
" Boundary tags: header and footer
= Explicit free list

% Questions from the Reading?

CSES351, Autumn 2022

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Ii

= 8-byte word

Implicit Free List Example

+ Each block begins with header (size in bytes and allocated bit)

>

+» Sequence of blocks in heap (size|allocated):

1610,32|1, 64/0, 321
£y 33 ¢« actual header dcta

Start of heap ek bleck. c g
- PN — ree wor
60| (32]1 64{0 321 e Allocated word
] 28 ~
o le W « &P % 2 l Allocated word

\/ unused

16 bytes = 2 word alignment

16-byte alignment for payload
= May require initial padding (internal fragmentation)
" Note size: paddingis considered part of previous block

%{Special one-word marker (0]|1) marks end of list

= Zero size is distinguishable from all other blocks

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022
(*p) gets the block

header

Implicit List: Finding a Free Block | pau extractsthe

allocated bit

. . (*p & -2) extracts
« First fit the size

= Search list from beginning, choose first free block that fits:
P = heap start;

while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small cquivalest to psinter ar thmelid wil,
p=p+ (*)p & -2); // go to next block (UNSCALED +) Chgr ¥

} // 5)#301!?”1;;92}% selected block or end

. . O(n]
= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start c g

X—\ ~N N ree wor

\(1e10) (32 64[0 321 o] Allocated word
X PaN v Allocated word

fﬁi alocder unused
S

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Implicit List: Finding a Free Block

+» Next fit

= |ike first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

+ Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Ii CSE351, Autumn 2022

o

\
r;,-/:\' oo v‘(\' a\.\b\,\

Polling Question frugee
payload A B/C/ D
+ Which allocation strategy and requests size / |// ‘7”\
remove external fragmentation in this /
Heap? B3 was the last fulfilled request. >0 %/ %
= Vote in Ed Lessons bi(;:jeeeﬂ 10 Al
. b lodes

malloc (50), malloc (50)
(B) First-fit:

malloc (50),malloc (30) >0
(C) Next-fit:

malloc (30),malloc (50)

(D) NEXt-fit: Start on hea
malloc (50),malloc (30) i

10

50

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Implicit List: Allocating in a Free Block

nev a\\oc&\'e’k / New ‘rree

+ Allocating in a free block: splitting WQ \

= Since allocated space might be smaller than free space, we
might want to split the block

Assume ptr points to a free block and has unscaled pointer arithmetic

void split(ptr b, int bytes) { // bytes = desired block size
@ int nex?vzs'ize = ((bzvqtinﬂ& >> 4) << 4% // round up to multiple of 16
® int oldszize = *Db; // why not mask out low bit?
(3}) *b = newsize; // initially unallocated
@ if (newsize < oldsize)
(3 * (bt+newsize) = oldiize - newsize; // set length in remaining
} // part of block (UNSCALED +)
/‘\ =" T T~J
heoder 7 <« ~ S a
malloc (24) : L 161 148|0 : 16[1 Free word
ptr b = £find (24+8) ’
split (b, 24+8) /Q\b . Allocated word
allocate (b) 4 == 4 Newly-allocated
Loty a=l 161 (32" 160|161 word
® - ® 8

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
" yvoid free(ptr p) {* (p-WORD) &= -2;}

" But can lead to “false fragmentation”

- p]-w()RD_ _
// N ,O’ Sar” TN
16]1 32 1610 161
9 M“ _ | | Free word
D Allocated word
//-‘\v”—_\\v’\\ Block of interest
free (p) 1611 132/0 1610 16|1
malloc (40) Oops! There is enough free space, but

the allocator won’t be able to find it

YA UNIVERSITY of WASHINGTON

Implicit List: Coalescing with Next

L25: Memory Allocation I

% Join (coalesce) with next block if also free

7
/

—
\

4

-——

161

= "\
@ir/”__N}ﬁb 16/1

CSES351, Autumn 2022

Free word

(N
b D next Allocated word
,’) So -7 - TS - Block of interest
free (p) 16/1 48]0 1“%; 161
~~ logically gone
void free (ptr p) // p polints to payload

*b &= -2;

ptr next = b +

if ((*next & 1)
*b += *next;

}

ptr b = p - WORD;

32
*D

// b points to block header

//
//
//
//

clear allocated bit

find next block (UNSCALED +)
1f next block 1s not allocated,
add its size to this block

+ How do we coalesce with the preceding block? we 't

Cuvren‘ﬂ)/

10

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Implicit List: Bidirectional Coalescing

% Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

7 As A ~a

32/0 32/0132/1 32/148/0 48/0132/1 32/1

V. - v~ ~ - AN ~ ” -

3 - -
Format of eader size a| a=1: allocated block
allocated and 4 a=0: free block
free blocks: oad and
payloadan size: block size (in bytes)
Boundary tags padding
| payload: application data

Footer size a| (allocated blocks only)

11

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed —

Allocated Free Allocated Free

12

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Constant Time Coalescing

Case 1 m1 1 m1 1 Case 2 m1 1 m1 1
m1 1 m1 1 m1 1 m1 1
n 1 n 0 n 1 n+m?2 0
—p —p
n 1 n 0 n 1
m2 1 m2 1 m?2 0
m2 1 m2 1 m?2 0 n+m?2 0
Case 3 m1l 0 n+ml 0 Case 4 m1l 0 n+ml+m2 |0
m1 0 m1 0
n 1 n 1
— —
n 1 n+ml 0 n 1
m2 1 m2 1 m?2 0
m?2 1 m2 1 m?2 0 n+ml+m2 |0

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Implicit Free List Review Questions

C\Mﬂv\—\—

~», n=5

52, 32008211 32/1haro] 481082/} 3211
‘ _ - "\@ P

+ What is the block header? What do we store and how?
Stores info aboct block sizeofblodle , is—allocated?
ALL,\,.@;{ B"’o‘(hecder

+» What are boundary tags and why do we need them?
l’\eadev and\ "FQS\‘er (S(uv\e M‘Po) SO \we @Gn ‘I’mve\rse l\s‘\’ in erH\er Ainedbw

Cp GY-r\‘C\A‘aY\y ‘Fw co a‘ ese "ﬁ)
+ When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)\AS‘\' 1 — adj(x(evx‘\’ free blocks shod have a\mady been Coclesced

« |f | want to check the size of the n-th block forward from the

current block, how many memory accesses do | make?

Nt 2 neekt veod cwrerx‘l’ black’s header of Lell &) L\ew\fr g‘\ ’(T«rge“' block
to get the s2e

14

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

= 8-byte word (free)

Keeping Track of Free Blocks _ &-byte word (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

-— -y —-—
” N\ ,/ \\ ”— 5\\
- g A IS

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/\

0 - 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
15

YA UNIVERSITY of WASHINGTON

Explicit Free Lists

Allocated block:

size

d

— “payload and
padding

L25: Memory Allocation I

Free block:

size

size

d

(same as implicit free list)

F/'n ext

|

prev

size

CSES351, Autumn 2022

+ Use list(s) of free blocks, rather than implicit list of all blocks

" The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes

= Since we only track free blocks, so we can use “payload” for pointers

= Still need boundary tags (header/footer) for coalescing

16

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Doubly-Linked Lists

NULL prev wd'/\ UL
& Nol ¢ R =
Jx Linear Root [/I\\!/,O K/ /\\I/,O
= Needs head/root pointer strudt

" First node prev pointer is NULL

= Last node next pointer is NULL

" Good for first-fit, best-fit

Start ‘/\O\ 6‘(\\‘/ @\Q
+ Circular ey e ~_ =~

n Tree \ict

= Still have pointer to tell you which node to start with
"= No NULL pointers (term condition is back at starting point)

" Good for next-fit, best-fit

17

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Explicit Free Lists

+ Logically: doubly-linked list

A |1 B | C
\ " N / W\ |
“hode O “hode L Nnode 2

+ Physically: blocks can be in any order

N
v

/ Forward (next) links

A B B

32pe75u32 |32 32480kt ~_ | |48|32predeani32]32/.} Let[32] “otosing

C \/’——
K Back (prev) links

previous Jrext Hod:s Gre Pafl‘ of free list
Precedins /‘Followin) blocks are pl\y.sim‘ hefghbors

18

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

Before
f Y\an L\:Lif\ \ld’ . '+’
s‘;\' selected
feee Wk
node n in it allocated / &ree
7
hode nH in list | @ %
After |
(with splitting) ® H poirters updated:
2 [N vw(){ n
I "~ wode m-|
| \n wode nt|
st Y\@C n " \l{\'
. ‘ Some .r\um};er 6F lr\oie
= malloc(..) i e 0

19

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g., start/header of a block).

Before rode el °

—

Shore ‘\crc
node m
store here
hode 4l @
After :
(f{llly allocated) st node n- L pointers updaded

1 'fM nod@ in 'rv‘ee lid’

now 'H\e hew nu)e 'V__E

= malloc(...)

20

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

*LIFO (last-in-first-out) policy
Insert freed block at the beginning (head) of the free list

- Pro: simple and constant time
- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

21

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4
P'CC@\""ﬁ — | Allocated Allocated Free Free
Block being freed ——
following——>1" Allocated Free Allocated Free

+» Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

4

» How do we tell if a neighboriniblock is free? |
con still wse ‘f-bundan/ ‘\’ajs (&m‘l' need Fo sear ‘r\fcc ' uf}) cther :mrkwn 1ong P”'ue
(sce lab5) 22

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 1) [Shown' but don't

Before free (@)

node O

Root LI O

Insert the freed block at the root of the list

After Q«M’rkum\ node in ‘Fr®

hew node A
Root O ; ﬂ |

hew node _Q

23

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 2) [Shown' but don't

Before free (@)
®

f

%o

+ Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O

o ¢
_

24

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 3) [Shown' but don'

Before free (@)
®

t

%o

+ Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

Root H

® <
&0

25

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 4) [Shown' but don'

Before free (@)
® ®

Root iI !I %o

O
» Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

After

Root H

26

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Do we always need the boundary tags?

Allocated block: Free block:
Size L a Size] a
next '
payload and Ay
padding
I; size a

(same as implicit free list)

+» Lab 5 suggests no...

27

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
- Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

28

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

BONUS SLIDES

The following slides are about the Seglist Allocator, for
those curious. You will NOT be expected to know this
material.

29

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

- — -y —— iy,
- >~ P ~ . ’f’ “\\
- Vo A A

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

0 - 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
30

YA UNIVERSITY of WASHINGTON

L25: Memory Allocation I

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+» QOrganized as an array of free lists

Size class
(in bytes)

> 16 — — > —>

=\

o 32

\ 4

!

S N
: 48-64

!

> 80-inf

J/

+» Often have separate classes for each small size

J/

+ For larger sizes: One class for each two-power size

CSES351, Autumn 2022

31

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

SeglList Allocator

«» Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" |f no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free
block in appropriate size class

32

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

SeglList Allocator

«» Have an array of free lists for various size classes

+» To free a block:
= Mark block as free
" Coalesce (if needed)
" Place on appropriate class list

33

YA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2022

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

= First-fit search of seglist approximates a best-fit search of
entire heap

= Extreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

34

