YA UNIVERSITY of WASHINGTON

L27: Javaand C

Java and C (condensed)
CSE 351 Autumn 2022

CSES351, Autumn 2022

Instructor: Teaching Assistants:
Justin Hsia Angela Xu Arjun Narendra Armin Magness
Assaf Vayner Carrie Hu Clare Edmonds
David Dai Dominick Ta Effie Zheng
James Froelich Jenny Peng Kristina Lansang
Paul Stevans Renee Ruan Vincent Xiao
GERIOUSLY? THIS T BET THEY ACTUALLY HIRED SONEONE | | WELL, YOU KNOW WHAT THEY SAY—
THING RUNS JAKA? TO SPEND SIx MONTHS FORTING THIS | | WHEN ALL YOU HAVE 1S A PAIR OF
ITS SINGLE-PURRSE | | JW SO THEYCOULD WRITE THEIR 20 | | BOLT CUTTERS AND A BOTTLE OF VODKA,
HARDWARE'! DUNES OF CODE INA FAMILIAR SETTING. | | EVERYTHING LOOKS LIKE THE LOCKON

5\
4

[|

THE DOoR OF WOLF BLITZERS BOATHOUSE.

./
p

IMGLAD

YOU HAD A
NICE NIGHT.

http://xkcd.com/801/

http://xkcd.com/801/

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2022

Relevant Course Information

+» hw26 due Wednesday (12/7)
+» Lab 5 due Friday (12/9)

+» Course evaluations now open

= See Ed Discussion post for links (separate for Lec and Sec)

+ Final Exam: 12/12-14
= Review Session: Friday 12/9 on Zoom, 2 hours TBD
" Final review section on 12/8

= Will be structured similarly to the Midterm

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Java vs. C

+ Reconnecting to Java (hello, CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’'ve learned about the following items in C; now
we’ll see what they look like for Java:
= Representation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

The Hardware/Software Interface

» Topic Group 1: Data T

Even more applications

" Memory, Data, Integers, Floating Point,

Arrays, Bbies?
& Libraries
«» Topic Group 2: Programs
= x86-64 Assembly, Procedures, Stacks, | rerawere I
Executables T
+» Topic Group 3: Scale & Coherence
P P ¥ ——— These apply to
" Caches, Processes, Virtual Memory, execution regardless
Memory Allocation of source language

Apply more generally than just C!!!

YA UNIVERSITY of WASHINGTON

L27: Javaand C

CSES351, Autumn 2022

Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Meta-point to this lecture

+» None of the data representations we are going to talk
about are quaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

" Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program

YA UNIVERSITY of WASHINGTON L27: Javaand C

CSES351, Autumn 2022

Data in Java

+» Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

"= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)
» null is typically represented as O but “you can’t tell”
%~ Much more interesting:
" Arrays
= Characters and strings
" Objects

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Data in Java: Arrays

Every element initialized to O or null

Length specified in immutable field at start of array (int: 4B)
" array.length returns value of this field

» Since it has this info, what can it do?

C: int array[5];

ford erd el Erd ey

0 4 20

Java: int[] array = new int[5];
5 |00]00J100100]00
0O 4 20 24

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Data in Java: Arrays

+» Every element initialized to O or null
+ Length specified in immutable field at start of array (int: 4B)

" array.length returns value of this field

Every access triggers a bounds-check

" Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
* Compiler may store length field

ford erd el Erd ey

o 20 in register for loops
Java: int[] array = new int[5]; + Compiler may prove that some
5 loolooloolooloo checks are redundant

0 4 20 24

YA UNIVERSITY of WASHINGTON L27: Javaand C

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets

» String not bounded by a '"\0"' (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

CSES351, Autumn 2022

C: 13[53]a5[33]35]31[\o
(ASCII)
1 4 7
Ja\(a: 6 43l00]53l00l45]00(33]00[35(00]31]00
(Unicode) 7 3

16

10

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L27: Javaand C

Data in Java: Objects

+ Data structures (objects) are always stored by reference, never

stored “inline”
" |nclude complex data types (arrays, other objects, etc.) using references

C: Java:

struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;

D

= a[] stored “inline” as part of /

= a stored by reference in object
4 . ifa ¢ p‘

ila o ¢ 0 4 |12 20
0 4 16 24 2

0 4 16 11

struct

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Pointer/reference fields and variables

+ InC, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct

" (*r) .aissocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r. a notation

= But really follow reference to r with offset to a, just like r=>ain C
® So no Java field needs more than 8 bytes

C. Java:

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec|();
r->i = val; r.1 = val;
r->al2] = val; r.al2] = val;
r->p = &r2; r.p = r2;

12

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON L27: Javaand C

Pointers/References

+ Pointers in C can point to any memory address

+ References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

C. Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec* p; Rec p;
} i }
struct rec* r = malloc(..); Rec r = new Rec();
some fn(&(r->aflll)); // ptr some fn(r.a, 1); // ref, index

r '\ r >

> Yila ¢| B!
ilar D e 0 4 '12 20

0 4 16 24

L27: Java and C CSE351, Autumn 2022

YA UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

+» Can cast any pointer into any other pointer
" Changes dereference and arithmetic behavior

struct block info {

size t size and tags;

struct block_ info* next;
. * i

struct block info* prev; [G%tbhﬂochar*u)]

do unscaled addition

i
typedef struct block info block info;

Cast back into
block info* touse

int x;
block info* Db;

block info* new block; / asblock info struct
new block = (block info*) ((char*) b + x);
S|In|p S|Nn|p
14

O 8 1lo 24 X

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Type-safe casting in Java

+ Can only cast compatible object references

[| Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat bl = new Boat(); // |--> sibling
Car cl = new Car(); // |-=-> sibling

Vehicle vl = new Car|();
Vehicle v2 = vl1;

Car c?2 = new Boat();
Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4d = (Car) v2;
Car chb = (Car) bl;

15

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Type-safe casting in Java

+ Can only cast compatible object references

[| Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |-=-> sibling

Vehicle vl = new Car(); «—— / Everything needed for Vehicle alsoin Car

Vehicle v2 = vl; «—— / vlisdeclared astype Vehicle

Car c2 = new Boat(); «—— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle (); «—— X Compiler error: Wrong direction —elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car c4d = (Car) v2; «—— / v2 referstoa Car at runtime

Car c5 = (Car) Dbl; «—— X Compiler error: Unconvertable types —b1 is

declared as type Boat 16

YA UNIVERSITY of WASHINGTON L27: Javaand C

Java Object Definitions

class Point {

double x; }(
double vy;

Point () { <«

x = 0;
y = 0;

boolean samePlace (Point p) {

}

return (x == p.x) && (y == p.Vy); S

Point p = new Point(); <

CSES351, Autumn 2022

fields

constructor

method(s)

creation

= How might we represent Java objects in memory based on what we’ve

learned in C?

17

YA UNIVERSITY of WASHINGTON L27: Javaand C

CSES351, Autumn 2022

Java Objects and Method Dispatch

Point object

P
header |vptr ° X %
vtable for class Point: . o—
\ code for Point () code for samePlace ()
Point object
3 ®
header |vptr X %

« Object header : GC info, hashing info, lock info, etc.
« Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
" One table per class

= Each object instance contains a vtable pointer (vptr)

18

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Java Constructors

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point));
p—->header = ...;

p->vptr = &Point vtable;
p->vptr[0] (p) s

Point object

P

header |vptr ? X Y
v

vtable for class Point: y o—

x code for Point () code for samePlace ()

19

YA UNIVERSITY of WASHINGTON

L27: Javaand C

CSES351, Autumn 2022

Java Methods

+ Static methods are just like functions

+ Instance methods:
= Can refer to this;

= Have an implicit first parameter for this; and
= Can be overridden in subclasses

/

+» The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

Java: C pseudo-translation:
p.samePlace (q) ; p->vptr[l] (p, 9);
. Point object
header | vptr ° X Y
v
vtable for class Point: . o=

K} code for Point () code for samePlace ()

20

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");

}

+~ Where does “z” go? At end of fields of Point
= Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification
+ Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayHi”

21

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");

z tacked on at end
ThreeDPoint object ‘

header | vptr X Y z

sayHi tackfd on at end Code for
/ E sayHi1
¢

vtable for ThreeDPoint: constructcu?* samePlace ? sayHi

(not Point) \

Old code for New code for
constructor samePlace

22

YA UNIVERSITY of WASHINGTON

Dynamic Dispatch

Point object

L27: Java and C CSE351, Autumn 2022

header |vptr

Point vtable:

code for Point’s samePlace ()

\
D e=> 227 \\>

code for Point ()

ThreeDPoint object

header | vptr X

ThreeDPoint vtable:

_——»| code for sayHi ()

Java:
Point p = ?27?27?;
return p.samePlace(q);

\'/

code for 3DPoint’s samePlace ()

C pseudo-translation:

// works regardless of what p 1is
return p->vptrl[l] (p, 9):

23

YA UNIVERSITY of WASHINGTON CSE351, Autumn 2022

Ta-da!

% In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vptr [1] (P ’ q)
" |n the body of the pointed-to code, any calls to (other)
methods of this will use p—>vptr

= Dispatch determined by p, not the class that defined a
method

24

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Implementing Programming Languages

+» Many choices in programming model implementation
= We've previously discussed compilation
= One can also interpret
+ Interpreters have a long history and are still in use
" e.g., Lisp, an early programming language, was interpreted
= e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Interpreter
implementation

Your source code -\ /-

PN

Interpreter binary
|7 Hardware

Your source code

Binary executable
|7 Hardware _‘

N

25

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Interpreters

+ Execute (something close to) the source code directly, meaning
there is less translation required

" This makes it a simpler program than a compiler and often provides
more transparent error messages
+ Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Just port the interpreter (program), and then
interpreting the source code is the same Interpreter

implementation

+ Interpreted programs tend to be
slower to execute and

harder to optimize
Your source code

PN

Interpreter binary
|7 Hardware

N

26

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Interpreters vs. Compilers

+ Programs that are designed for use with particular
language implementations

" You can choose to execute code written in a particular language
via either a compiler or an interpreter, if they exist

+» “Compiled languages” vs. “interpreted languages” a
misuse of terminology
" But very common to hear this
= And has some validation in the real world (e.g., JavaScript vs. C)
+» Some modern language implementations are a mix

" e.g., Java compiles to bytecode that is then interpreted

"= Doing just-in-time (JIT) compilation of parts to assembly for
performance

27

YA UNIVERSITY of WASHINGTON

L27: Javaand C

CSES351, Autumn 2022

Compiling and Running Java

1. Save your Java codeina . java file

2. To run the Java compiler:

" jJavac Foo.java

" The Java compiler converts Java into Java bytecodes
- Storedina .classfile

3. To execute the program stored in the bytecodes,

these can be interpreted by the Java Virtual Machine
(JVM)

® Running the virtual machine: java Foo

" Loads Foo.class and interprets the bytecodes

28

YA UNIVERSITY of WASHINGTON

L27: Javaand C

CSES351, Autumn 2022

“The .IVM” Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

—

% Java programs are usually run by a
Java virtual machine (JVM)

" JVMs interpret an intermediate language called Java
bytecode

"= Many JVMs compile bytecode to native machine code
- Just-in-time (JIT) compilation

« http://en.wikipedia.org/wiki/Just-in-time compilation

= Java is sometimes compiled ahead of time (AOT) like C

29

http://en.wikipedia.org/wiki/Just-in-time_compilation

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Virtual Machine Model

High-Level Language Program
(e.g., Java, C)
Bytecode compiler Ahead-of-time
(e.g., Jjavac Foo.java) compiler

_cimﬁile_time_ ____ | virtual Machine Language

run time (e.g., Java bytecodes) B

I

Virtual machine (interpreter) JT |

(e.g., java Foo) compiler I

I

Native Machine Language
(e.g., x86, ARM, Risc V)

30

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Java Bytecode

Holds pointer this

+ Like assembly code for JVM, Other arguments to method
but works on all JVMs Other local variables
= Hardware-independent! l
vl | 1

» Typed (unlike x86 assembly) —

» Strong JVM protections O[112f3]14] ____ N

variable table

operand stack

constant
pool

31

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Holds pointer this

.'VM Ope rad nd StaCk Other arguments to method

Other local variables

[Y \

JVM: o[1]2T3Ta] n
variable table
(’i’=integer, ™\ operand stack
‘a’ = reference,
‘©’ for byte,
‘c’ for char, T
\ld’ for double, -) constant
pool
\ 4
Bytecode: iload 1 // push 1% argument from table onto stack
iload 2 // push 2" argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
// push result back onto stack
istore 3 // pop result and put it into third slot in table

/ Compiled | mov 8 (%ebp), %eax

No registers or stack locations! to (1A32) x86: | mov 12 (%ebp), %edx
All operations use operand stack add %edx, %eax
mov %Seax, -8 (%ebp)

32

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Compiled from Employee.java
Disassembled class Employee extends java.lang.Object {
public Employee (java.lang.String,int) ;
public java.lang.String getEmployeeName () ;

java Bytecode | public int getEmployeeNumber () ;

Method Employee (java.lang.String, int)
0 aload O
1 invokespecial #3 <Method java.lang.Object ()>
4 aload 0
5 aload 1
6 putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload 1
> jJavap —-c Employee 16 iload 2
17 invokespecial #6 <Method void
storeData (java.lang.String, int)>

> javac Employee.java

20 return

Method java.lang.String getEmployeeName ()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload O

1 getfield #4 <Field int idNumber>
4 ireturn

http://en.wikipedia.org/wiki/Java
bytecode instruction listings

Method void storeData (java.lang.String, int)
35

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Other languages for JVMs

+ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:

Aspect), an aspect-oriented extension of Java

ColdFusion, a scripting language compiled to Java

Clojure, a functional Lisp dialect

Groovy, a scripting language

JavaFX Script, a scripting language for web apps

JRuby, an implementation of Ruby

Jython, an implementation of Python

Rhino, an implementation of JavaScript

Scala, an object-oriented and functional programming language
And many others, even including C!

Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC'ed platform

36

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Microsoft’s C# and .NET Framework

«» C# has similar motivations as Java
®" Virtual machine is called the

) c# VB.NET J#
Common Language Runtime code code code
= Common Intermediate Language 1 l l
is the bytecode for C# and other
Compiler Compiler Compiler

languages in the .NET framework

— | —

jemeeeae Commeon Language Infrastructure -------

.NET compatible languages compile to a
Comman second platform-neutral language called

Intermediate Comman Intermediate Language (CIL).
Language

l

Common
Language
Runtime

l

01001100101011
11010101100110

The platform-specific Common Language
Runtime (CLR) compiles CIL to machine-
readable code that can be executed on the
current platform.

37

YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

We made it! @ @
+» Topic Group 1: Data T

Even more applications

" Memory, Data, Integers, Floating Point, : :
Arrays, Structs Applications

Programming Languages

& Libraries

«» Topic Group 2: Programs

Hardware

= x86-64 Assembly, Procedures, Stacks,
Executables

+» Topic Group 3: Scale & Coherence

" Caches, Processes, Virtual Memory,
Memory Allocation

