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Relevant Course Information

+» hw26 due Wednesday (12/7)
+» Lab 5 due Friday (12/9)

+» Course evaluations now open

= See Ed Discussion post for links (separate for Lec and Sec)

+ Final Exam: 12/12-14
= Review Session: Friday 12/9 on Zoom, 2 hours TBD
" Final review section on 12/8

= Will be structured similarly to the Midterm
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Java vs. C

+ Reconnecting to Java (hello, CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’'ve learned about the following items in C; now
we’ll see what they look like for Java:
= Representation of data
= Pointers / references
= Casting
" Function / method calls including dynamic dispatch
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The Hardware/Software Interface

» Topic Group 1: Data T

Even more applications

" Memory, Data, Integers, Floating Point,

Arrays, Bbies?
& Libraries
«» Topic Group 2: Programs
= x86-64 Assembly, Procedures, Stacks, | rerawere I
Executables T
+» Topic Group 3: Scale & Coherence
P P ¥ ——— These apply to
" Caches, Processes, Virtual Memory, execution regardless
Memory Allocation of source language

Apply more generally than just C!!!
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Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms
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Meta-point to this lecture

+» None of the data representations we are going to talk
about are quaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

" Butitisimportant to understand an implementation of the
lower levels — useful in thinking about your program
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Data in Java

+» Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: int is 4 bytes in Java regardless of machine

"= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)
» null is typically represented as O but “you can’t tell”
%~ Much more interesting:
" Arrays
= Characters and strings
" Objects
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Data in Java: Arrays

Every element initialized to O or null

Length specified in immutable field at start of array (int: 4B)
" array.length returns value of this field

» Since it has this info, what can it do?

C: int array[5];

ford erd el Erd ey

0 4 20

Java: int[] array = new int[5];
5 |00]00J100100]00
0O 4 20 24
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Data in Java: Arrays

+» Every element initialized to O or null
+ Length specified in immutable field at start of array (int: 4B)

" array.length returns value of this field

Every access triggers a bounds-check

" Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
* Compiler may store length field

ford erd el Erd ey

o 20 in register for loops
Java:  int[] array = new int[5]; +  Compiler may prove that some
5 loolooloolooloo checks are redundant

0 4 20 24
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Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets

» String not bounded by a '"\0"' (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

CSES351, Autumn 2022

C: 13[53]a5[33]35]31[\o
(ASCII)
1 4 7
Ja\(a: 6 43l00]53l00l45]00(33]00[35(00]31]00
(Unicode) 7 3

16

10
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Data in Java: Objects

+ Data structures (objects) are always stored by reference, never

stored “inline”
" |nclude complex data types (arrays, other objects, etc.) using references

C: Java:

struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;

D

= a[] stored “inline” as part of /

= a stored by reference in object
4 . ifa ¢ p‘

ila o ¢ 0 4 |12 20
0 4 16 24 2

0 4 16 11

struct
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Pointer/reference fields and variables

+ InC, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct

" (*r) .aissocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r. a notation

= But really follow reference to r with offset to a, just like r=>ain C
® So no Java field needs more than 8 bytes

C. Java:

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec|();
r->i = val; r.1 = val;
r->al2] = val; r.al2] = val;
r->p = &r2; r.p = r2;

12
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Pointers/References

+ Pointers in C can point to any memory address

+ References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

C. Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec* p; Rec p;
} i }
struct rec* r = malloc(..); Rec r = new Rec();
some fn(&(r->aflll)); // ptr some fn(r.a, 1); // ref, index

r '\ r >

> Yila ¢| B!
ilar D e 0 4 '12 20

0 4 16 24
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Casting in C (example from Lab 5)

+» Can cast any pointer into any other pointer
" Changes dereference and arithmetic behavior

struct block info {

size t size and tags;

struct block_ info* next;
. * i

struct block info* prev; [ G%tbhﬂochar*u)]

do unscaled addition

i
typedef struct block info block info;

Cast back into
block info* touse

int x;
block info* Db;

block info* new block; / asblock info struct
new block = (block info*) ( (char*) b + x );
S|In|p S|Nn|p
14

O 8 1lo 24 X
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Type-safe casting in Java

+ Can only cast compatible object references

[ | Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat bl = new Boat(); // |--> sibling
Car cl = new Car(); // |-=-> sibling

Vehicle vl = new Car|();
Vehicle v2 = vl1;

Car c?2 = new Boat();
Car c3 = new Vehicle () ;

Boat b2 = (Boat) v;

Car c4d = (Car) v2;
Car chb = (Car) bl;

15
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Type-safe casting in Java

+ Can only cast compatible object references

[ | Based on Class hlerarchy class Boat extends Vehicle {

int propellers;

}

class Object { class Vehicle {
> int passengers;

} }

class Car extends Vehicle {
int wheels;

}

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |-=-> sibling

Vehicle vl = new Car(); «—— / Everything needed for Vehicle alsoin Car

Vehicle v2 = vl; «—— / vlisdeclared astype Vehicle

Car c2 = new Boat(); «—— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle (); «—— X Compiler error: Wrong direction —elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car c4d = (Car) v2; «—— / v2 referstoa Car at runtime

Car c5 = (Car) Dbl; «—— X Compiler error: Unconvertable types —b1 is

declared as type Boat 16
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Java Object Definitions

class Point {

double x; }(
double vy;

Point () { <«

x = 0;
y = 0;

boolean samePlace (Point p) {

}

return (x == p.x) && (y == p.Vy); S

Point p = new Point(); <

CSES351, Autumn 2022

fields

constructor

method(s)

creation

= How might we represent Java objects in memory based on what we’ve

learned in C?

17
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Java Objects and Method Dispatch

Point object

P
header |vptr ° X %
vtable for class Point: . o—
\ code for Point () code for samePlace ()
Point object
3 ®
header |vptr X %

« Object header : GC info, hashing info, lock info, etc.
« Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
" One table per class

= Each object instance contains a vtable pointer (vptr)

18
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Java Constructors

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point));
p—->header = ...;

p->vptr = &Point vtable;
p->vptr[0] (p) s

Point object

P

header |vptr ? X Y
v

vtable for class Point: y o—

x code for Point () code for samePlace ()

19



YA UNIVERSITY of WASHINGTON

L27: Javaand C

CSES351, Autumn 2022

Java Methods

+ Static methods are just like functions

+ Instance methods:
= Can refer to this;

= Have an implicit first parameter for this; and
= Can be overridden in subclasses

/

+» The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

Java: C pseudo-translation:
p.samePlace (q) ; p->vptr[l] (p, 9);
. Point object
header | vptr ° X Y
v
vtable for class Point: . o=

K} code for Point () code for samePlace ()

20
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Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");

}

+~ Where does “z” go? At end of fields of Point
= Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification
+ Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayHi”

21
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Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello");

z tacked on at end
ThreeDPoint object ‘

header | vptr X Y z

sayHi tackfd on at end Code for
/ E sayHi1
¢

vtable for ThreeDPoint: constructcu?* samePlace ? sayHi

(not Point) \

Old code for New code for
constructor samePlace

22
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Dynamic Dispatch

Point object

L27: Java and C CSE351, Autumn 2022

header |vptr

Point vtable:

code for Point’s samePlace ()

\
D e=> 227 \\>

code for Point ()

ThreeDPoint object

header | vptr X

ThreeDPoint vtable:

_——»| code for sayHi ()

Java:
Point p = ?27?27?;
return p.samePlace(q);

\'/

code for 3DPoint’s samePlace ()

C pseudo-translation:

// works regardless of what p 1is
return p->vptrl[l] (p, 9):

23
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Ta-da!

% In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vptr [1] (P ’ q)
" |n the body of the pointed-to code, any calls to (other)
methods of this will use p—>vptr

= Dispatch determined by p, not the class that defined a
method

24
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Implementing Programming Languages

+» Many choices in programming model implementation
= We've previously discussed compilation
= One can also interpret
+ Interpreters have a long history and are still in use
" e.g., Lisp, an early programming language, was interpreted
= e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Interpreter
implementation

Your source code -\ /-

PN

Interpreter binary
|7 Hardware

Your source code

Binary executable
|7 Hardware _‘

N

25
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Interpreters

+ Execute (something close to) the source code directly, meaning
there is less translation required

" This makes it a simpler program than a compiler and often provides
more transparent error messages
+ Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Just port the interpreter (program), and then
interpreting the source code is the same Interpreter

implementation

+ Interpreted programs tend to be
slower to execute and

harder to optimize
Your source code

PN

Interpreter binary
|7 Hardware

N

26



YA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Autumn 2022

Interpreters vs. Compilers

+ Programs that are designed for use with particular
language implementations

" You can choose to execute code written in a particular language
via either a compiler or an interpreter, if they exist

+» “Compiled languages” vs. “interpreted languages” a
misuse of terminology
" But very common to hear this
= And has some validation in the real world (e.g., JavaScript vs. C)
+» Some modern language implementations are a mix

" e.g., Java compiles to bytecode that is then interpreted

"= Doing just-in-time (JIT) compilation of parts to assembly for
performance

27
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Compiling and Running Java

1. Save your Java codeina . java file

2. To run the Java compiler:

" jJavac Foo.java

" The Java compiler converts Java into Java bytecodes
- Storedina .classfile

3. To execute the program stored in the bytecodes,

these can be interpreted by the Java Virtual Machine
(JVM)

® Running the virtual machine: java Foo

" Loads Foo.class and interprets the bytecodes

28
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“The .IVM” Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

—

% Java programs are usually run by a
Java virtual machine (JVM)

" JVMs interpret an intermediate language called Java
bytecode

"= Many JVMs compile bytecode to native machine code
- Just-in-time (JIT) compilation

« http://en.wikipedia.org/wiki/Just-in-time compilation

= Java is sometimes compiled ahead of time (AOT) like C

29
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Virtual Machine Model

High-Level Language Program
(e.g., Java, C)
Bytecode compiler Ahead-of-time
(e.g., Jjavac Foo.java) compiler

_cimﬁile_time_ ____ | virtual Machine Language

run time (e.g., Java bytecodes) B

I

Virtual machine (interpreter) JT |

(e.g., java Foo) compiler I

I

Native Machine Language
(e.g., x86, ARM, Risc V)

30
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Java Bytecode

Holds pointer this

+ Like assembly code for JVM, Other arguments to method
but works on all JVMs Other local variables
= Hardware-independent! l
vl | 1

» Typed (unlike x86 assembly) —

» Strong JVM protections O[112f3]14] ____ N

variable table

operand stack

constant
pool

31
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Holds pointer this

.'VM Ope rad nd StaCk Other arguments to method

Other local variables

[ Y \

JVM: o[1]2T3Ta] n
variable table
(’i’=integer, ™\ operand stack
‘a’ = reference,
‘©’ for byte,
‘c’ for char, T
\ld’ for double, - ) constant
pool
\ 4
Bytecode: iload 1 // push 1% argument from table onto stack
iload 2 // push 2" argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
// push result back onto stack
istore 3 // pop result and put it into third slot in table

/ Compiled | mov 8 (%ebp), %eax

No registers or stack locations! to (1A32) x86: | mov 12 (%ebp), %edx
All operations use operand stack add %edx, %eax
mov %Seax, -8 (%ebp)

32
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Compiled from Employee.java
Disassembled class Employee extends java.lang.Object {
public Employee (java.lang.String,int) ;
public java.lang.String getEmployeeName () ;

java Bytecode | public int getEmployeeNumber () ;

Method Employee (java.lang.String, int)
0 aload O
1 invokespecial #3 <Method java.lang.Object ()>
4 aload 0
5 aload 1
6 putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload 1
> jJavap —-c Employee 16 iload 2
17 invokespecial #6 <Method void
storeData (java.lang.String, int)>

> javac Employee.java

20 return

Method java.lang.String getEmployeeName ()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload O

1 getfield #4 <Field int idNumber>
4 ireturn

http://en.wikipedia.org/wiki/Java
bytecode instruction listings

Method void storeData (java.lang.String, int)
35
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Other languages for JVMs

+ JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:

Aspect), an aspect-oriented extension of Java

ColdFusion, a scripting language compiled to Java

Clojure, a functional Lisp dialect

Groovy, a scripting language

JavaFX Script, a scripting language for web apps

JRuby, an implementation of Ruby

Jython, an implementation of Python

Rhino, an implementation of JavaScript

Scala, an object-oriented and functional programming language
And many others, even including C!

Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC'ed platform

36
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Microsoft’s C# and .NET Framework

«» C# has similar motivations as Java
®" Virtual machine is called the

) c# VB.NET J#
Common Language Runtime code code code
= Common Intermediate Language 1 l l
is the bytecode for C# and other
Compiler Compiler Compiler

languages in the .NET framework

— | —

jemeeeae Commeon Language Infrastructure -------

.NET compatible languages compile to a
Comman second platform-neutral language called

Intermediate Comman Intermediate Language (CIL).
Language

l

Common
Language
Runtime

l

01001100101011
11010101100110

The platform-specific Common Language
Runtime (CLR) compiles CIL to machine-
readable code that can be executed on the
current platform.

37
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We made it! @ @
+» Topic Group 1: Data T

Even more applications

" Memory, Data, Integers, Floating Point, : :
Arrays, Structs Applications

Programming Languages

& Libraries

«» Topic Group 2: Programs

Hardware

= x86-64 Assembly, Procedures, Stacks,
Executables

+» Topic Group 3: Scale & Coherence

" Caches, Processes, Virtual Memory,
Memory Allocation




