Me: man, | sure would like some 4 1 Alvays hasibean.
nice control flow constructs for my

= Wait, its all just
G+ assembly?

Assembly

B BN (SE 351

i
_ - -;f‘_ ~7

aJUMP | = SECtion 4

o o \TAKEIT OR LEAVEIT.

When you use gdb to see
the assembly code of a program: X86-64 Assem b|y

When you write high quality assembly code

Administrivia

Lab 2:

— Due next Friday (10/28/2022)!
— Make sure all your phase answers are followed by a newline character.

Homework:

— HW 9 Due TOMORROW (10/21/2022)!
— HW 10 Due Monday (10/24/2022)!

x86-64 Assembly

x86-64 Assembly

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal

computers.

e Itwas developed by Intel and AMD and its 32-bit predecessor is called IA32.

e Xx86-64 is designed for complex instruction set computing (CISC), generally

meaning it contains a larger set of more versatile and more complex instructions.

Other instruction sets include ARM (RISC) and PowerPC.

Data and Instructions

For this course, we will utilize only a small subset of x86-64's instruction set and
omit floating point instructions. The subset of x86-64 instructions that we will use

in this course take either one or two operands, usually in the form:

instruction operandl, operand2
There are three options for operands:

- Immediates: constants (e.g. $0x400)
- Registers: fast memory accessible to the CPU (e.g. %rax, %edx)

- Memory: memory addresses computed with D(Rb, Ri, S)
- such as 0x400 (%xdi, %rsi, 4) =(%rdi+ 4 * %rsi) + 0x400

Address Computation

We can do more complicated memory accesses like so:
e D(Rb, Ri, S)

Rb - base register

Ri -index register

S -scale factor (1, 2, 4, 8)

D -displacement

Result is Mem[Reg[Rb]+Reg[R1i]*S+D]

o O O O O

So Ox400 (%rdi, %rsi, 4) evaluatesto %rdi + 4 x %rsi + 0Ox400.

This is very useful for accessing elements in an array, and also for use in
conjunction with 1ea (which does this address computation, but stores the raw
result instead of accessing memory at the computed address).

Operand Size

The number of bytes of each operand used in an operation can be set using one of four
suffixes. If movb src, dst copies 1 byte from src to dst, then:

movb src, dst - copies 1 byte from srcto dst

movw src, dst - copies 2 bytes from src to dst
movl src, dst - copies 4 bytes from src to dst
movq src, dst - copies 8 bytes from src to dst

Midterm Reference Sheet

The reference sheet for the midterm is a great resource, especially for x86-64 (we handed out
copies in class on Friday).

You can find it on the website here:
https://courses.cs.washington.edu/courses/cse351/22sp/exams/ref-mt.pdf

https://courses.cs.washington.edu/courses/cse351/22sp/exams/ref-mt.pdf

CSE 351 Reference Sheet (Midterm)

Conditionals

Instruction (op) s, d test a, b |cmp a, b
Arary | Deomal |t 2 [a¥ | 22 [ma¥ | 0| 25k aee| 2% |:2% | 3% | 2% je “Equal’ d(p) s==0|bsa==0| b==a
0001 1 1 1]/2]4]8]16]32]64]128]256] 512 | 1024 jne “Not equal” d (op) s !'=0 b&al=0 b != a |
0010 2 2
0011 3 3 IEEE 754 FLOATING-POINT js “Sign” (negative) d(op) s< 0| b&a< 0 |b-a< 0 '
STANDARD IEEE 754 Sy . . -
gig’: 2 ‘; Value: 1 x Mantissa x 26xonent E ™ g jns (non-negative) d (op) s >= 0 b&a>0 b-a >= 0]
i . (1) {E-bias) B
0110 6 6 Bit fields: (-1)°x 1.M x 2104 Slizerms | ol zeros £0 jg “Greater” d(op) s> 0 [bsa> 0 b> a |
0111 7 7 where Single Precision Bias = 127, all zeros | hon-zero + denorm num
1000 2 3 Double Precision Bias = 1023. 110 MAX-1 | anything | norm num jge “Greater or equal” d(op) s> 0 | b&a>0 b>=a |
1001 9 9 IEEE Single Precision and |isallonas):akzerps e jz “Less” d (op) s < 0 b&ga< 0 b< a |
1010 10 A Double Precision Formats: |_altones | non-zero NaN
1011 11 B Ak30 2322 0 jle “Lessorequal” d (op) s <=0 b&a<=0 b <= |
1100 2 C BL_e | M : = T
1101 13 D 1bit 8 bits 23 bits ja ‘Above” (unsigned >) d (op) s > 0U b&a>0U b > a |
£362 5251 0
1110 ‘; i sl E | ™M jb “Below” (unsigned<) | d (op) s < 0U | b & a < 0U b<a |
A X 1bit 11 bits 52 bits
Assembly Instructions Registers Sizes
mov a, b Copy from a to b. Name of “virtual” register ' x86-64 size
movs a, b ith si i i i Lowest Lowest Lowest Ctype . (bytes)
’ Copy from a to b with sign extension. Needs two width specifiers. Name Convention dbytes 2 bytes byte p— S :
movz a, b Copy from a to b with zero extension. Needs two width specifiers. =
%rax | Returnvalue - Callersaved | %eax %ax %al short W 2
lea a, b Compute address and store in b.
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8. srbx Callee saved | #ebx ¥bx bl int 1 4
push src Push src onto the stack and decrement stack pointer. %rcx | Argument #4 - Caller saved | %ecx $cx $cl long q 8
pop dst Pop from the stack into dst and increment stack pointer. $rdx | Argument #3 - Caller saved | %edx %dx 3dl
call <func> j s s s R A
Push return address onto stack and jump to a procedure. %rsi | Argument #2 - Callersaved | %esi $si §sil
ret Pop return address and jump there. N) .)
= %rdi | Argument #1 - Callersaved | %edi %di %dil
add a, b Add from a to b and store in b (and sets flags).
sub a, b Subtract 2 from b (compute b-z) and store in b (and sets flags). = Stack Pointer | ¥esp gsp L
imul a, b Multiply a and b and store in b (and sets flags). $rbp Callee saved | %ebp $bp $bpl
and a, b Bitwise AND of a and b, store in b (and sets flags). %r8 | Argument #5-Callersaved | %r8d %r8w %r8b
sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags). %r9 Argument #6 — Caller saved | %r9d $r9w %r9b
shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags). %710 Callersaved | $r10d %r10w $%rl0b
shl a, b hi lue of b i i flags).
’ Shift value o gftbxablts, store in b (and sets a_gf)u _ — Callersaved | $711d $rllw $rilb
cmp a, b Compare b with a (compute b~z and set condition codes based on result). i FETn o0
v T rl2w %r
test a, b Bitwise AND of a and b and set condition codes based on result. ‘ Collee saved
jmp <label> Unconditional jump to address. #r13 | Calleesaved (8ol SONNSCISH R ¥ ci0b
j* <label> Conditional jump based on condition codes (more on next page). $rl4 ‘ Calleesaved | $r1d4d %rl4w $%rldb
set* a Set byte a to 0 or 1 based on condition codes. %rl5 ‘ Calleesaved | $r15d %rl5w %rlSb

Interpreting Instructions

What do the following assembly instructions do?

movqg $351, %rax Move the number 351 into 8-byte (Quad) register “rax”

addq %rdi, %orsi

movq (%rdi), %r8

leaq (%rax,%rax,8), %rax

Functions (briefly)

Similar to C - functions take arguments and can return a value.
Arguments:

e Firstargumentis stored in %xdi, second in %xsi, third in %xrdx.
e Arguments have to be copied into registers before the function is called.

Return:
e By convention, %rax is used for the return value.

More on this (function calls, more arguments, etc.) in lecture!

Exercise 1

Symbolically, what does the following code return? Remember, register %rax is used to store

the return value.

movl (%rdi), %eax

leal (%eax,%eax,2), %eax
addl %eax, %eax

andl %esi, %eax

subl %esi, %eax

ret

#
#

/3

Xrdi

-> X

¥rax -> 1

%esi

_>y

*X

*X * 3

(*x * 3) * 2

(¥x * 6) & y

((*x * 6) & y) -y

Conditionals

Condition Codes

Condition codes include the zero (ZF), sign (SF), carry (unsigned overflow, CF), and
(signed, OF) overflow flags. They are stored on the processor in their own register.

- They are implicitly set by arithmetic operations:
- addqg src, dst
r = dst + src (resultused to set flags)
- There are also instructions to only set the condition codes:

- cmp a, b
- r = b - a (resultsets flags, but is not stored)
- test a, b

- 1 = a & b (result sets flags, but is not stored)

Control Flow

The condition codes are often used in
combination with j* (jump) and set*
instructions.

These instructions take one operand and
“change the instruction pointer” (j*) or set given
byte (set*) respectively depending on different
combinations of the condition codes.

“change the instruction pointer” => Jump to
execute different instructions. We will cover
how these relate next week!

Conditionals

Instruction (op) s, d test a, b |cmp a, b
je “Equal” d (op) s == 0 b&a==0 b ==a
jne “Notequal” d (op) s =0 b&al!=0 b != a
e “Sign” (negative) d (op) s < 0 b&ac< 0 b-a < 0
jns (non-negative) d (op) s >= 0 b&a>»>0 b-a >= 0
jg “Greater” d (op) s> 0 b&ga> 0 b> a
jge “Greater or equal” d (op) s >= 0 b&a>»>0 b > a
jl “Less” d (op) s < 0 b&a< 0 b< a
jle “Lessorequal” d (op) s <=0 b&a<=0 b <= a
ja “Above” (unsigned>) | d (op) s > 0U b & a>0U b > a
jb “Below” (unsigned <) d (op) s < 0U b & a<0U b < a

Exercise 2

Write an equivalent C function for the following x86-64 code:

mystery:
testl %edx, %edx
js .L3
cmpl %esi, %edx
jge .L3
movslq %%edx, %rdx
movl %rdi,%rdx,4), %eax
ret

.L3:
movl $0, %eax
ret

Exercise 2

mystery:
testl %edx, %edx
js .L3
cmpl %esi, %edx
jge .L3
movslq %edx, %rdx
movl (%rdi,%rdx,4), %eax
ret
.L3:
movl $0, %eax

ret

Exercise 2

mystery: int mystery(? x, int y, int 2z)
testl %edx, %edx
js .L3
cmpl %esi, %edx
jge .L3
movslq %edx, %rdx
movl (%rdi,%rdx,4), %eax
ret
.L3:
movl $0, %eax
ret

Exercise 2

mystery: int mystery(? x, int y, int z) 3}
testl %edx, %edx if ()
js .L3
cmpl %esi, %edx else
jge .L3
movslqg Y%edx, %rdx ¢
movl (%rdi,%rdx,4), %eax
ret

.L3:
movl $0, %eax
ret

Exercise 2

mystery:
testl %edx, %edx
js .L3
cmpl %esi, %edx
jge .L3
movslq %edx, %rdx

movl (%rdi,%rdx,4), %eax
ret
.L3:
movl $0, %eax
ret

int mystery(? x, int vy,

if (z >= 0 && z < vy)

else

int 2) 3

Conditionals

Instruction (op) test a, b |cmp a, b
Jje “Equal” d (op) b&a==0 b ==a
jne “Notegqual” d (op) b&al=0 b != a
s “Sign” (negative) d (op) b&ac< 0 b-a < 0
jns (non-negative) d (op) b&a>0 b-a >= 0
jg “Greater” d (op) b&a> 0 b> a
jge “Greater or equal” d (op) b&a>>0 b > a
3L “Less” d (op) b&ga< 0 b< a
jle “Lessor equal” d (op) b&ac<=0 b <= a
ja “Above” (unsigned>) | d (op) b&a>0U b > a
jb “Below” (unsigned <) d (op) b & ac<o0U b <y a

Exercise 2

mystery: int mystery(int *x, int y, int z) {
testl %edx, %edx if (z >=0&& z < vy)
js .L3 return x[z];
cmpl %esi, %edx
jge .L3 else
movslq %edx, %rdx
movl (%xrdi,%rdx,4), %eax ¢
ret
.L3:
movl $0, %eax
ret

Exercise 2

mystery: int mystery(int *x, int y, int z) {
testl %edx, %edx if (z >=0&& z < vy)
js .L3 return x[z];
cmpl %esi, %edx
jge .L3 else
movslq %edx, %rdx return 0O;
movl %rdi,%rdx,4), %eax I3
ret
.L3:
movl $0, %eax
ret

Exercise 3

Convert the following C function into x86-64 assembly code. You are not being judged on
the efficiency of your code - just correctness.

long happy(long *x, long y, long z) {
if (y > z)
return z + vy;
else
return xx;

Exercise 3

Convert the following C function into x86-64 assembly code. You are not being judged on
the efficiency of your code - just correctness.

ret

happy:
cmpq %rdx, %rsi
jle .else
leaq (%xdx, %rsi), %rax
ret
.else:

movqg (%rdi), %rax

Multiple other possibilities (e.g.
switch ordering of if/else clauses,

replace lea with mov/add instruction
pair).

Debugging methods...

The GNU Debugger (GDB)

The GNU Debugger (GDB) is a powerful debugging tool that will be critical to Lab 2
and Lab 3 and is a useful tool to know as a programmer moving forward.

There are tutorials and reference sheets available on the course webpage.

Make sure that you're familiar with GDB because you'll be using it a lot on labs 2
and 3.

Take some time to learn helpful commands like bt (backtrace) and
tui/layout.

Tutorial time!

That’s All, Folks!

Thanks for attending section! Feel free to stick
around for a bit if you have quick questions
(otherwise post on Ed or go to office hours).

See you all next week! :-)

Java

COBOL

Assembly

Physically inputting O's
and 1's into the CPU slot
with electricity through a
copper wire

Best Programming Language

