
CSE 351
Section 4

x86-64 Assembly

Administrivia

● Lab 2:

→ Due next Friday (10/28/2022)!

→ Make sure all your phase answers are followed by a newline character.

● Homework:

→ HW 9 Due TOMORROW (10/21/2022)!

→ HW 10 Due Monday (10/24/2022)!

x86-64 Assembly

x86-64 Assembly

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal

computers.

● It was developed by Intel and AMD and its 32-bit predecessor is called IA32.

● x86-64 is designed for complex instruction set computing (CISC), generally

meaning it contains a larger set of more versatile and more complex instructions.

Other instruction sets include ARM (RISC) and PowerPC.

Data and Instructions

For this course, we will utilize only a small subset of x86-64’s instruction set and

omit floating point instructions. The subset of x86-64 instructions that we will use

in this course take either one or two operands, usually in the form:

instruction operand1, operand2

There are three options for operands:

- Immediates: constants (e.g. $0x400)

- Registers: fast memory accessible to the CPU (e.g. %rax, %edx)

- Memory: memory addresses computed with D(Rb, Ri, S)
- such as 0x400(%rdi, %rsi, 4) = (%rdi + 4 * %rsi) + 0x400

We can do more complicated memory accesses like so:
● D(Rb, Ri, S)

○ Rb - base register
○ Ri - index register
○ S - scale factor (1, 2, 4, 8)
○ D - displacement
○ Result is Mem[Reg[Rb]+Reg[Ri]*S+D]

So 0x400(%rdi, %rsi, 4) evaluates to %rdi + 4 * %rsi + 0x400.
This is very useful for accessing elements in an array, and also for use in
conjunction with lea (which does this address computation, but stores the raw
result instead of accessing memory at the computed address).

Address Computation

Operand Size
The number of bytes of each operand used in an operation can be set using one of four
suffixes. If movb src, dst copies 1 byte from src to dst, then:

● movb src, dst - copies 1 byte from src to dst
● movw src, dst - copies 2 bytes from src to dst
● movl src, dst - copies 4 bytes from src to dst
● movq src, dst - copies 8 bytes from src to dst

Midterm Reference Sheet
The reference sheet for the midterm is a great resource, especially for x86-64 (we handed out
copies in class on Friday).

You can find it on the website here:
https://courses.cs.washington.edu/courses/cse351/22sp/exams/ref-mt.pdf

https://courses.cs.washington.edu/courses/cse351/22sp/exams/ref-mt.pdf

Interpreting Instructions
What do the following assembly instructions do?

X86-64 instruction English equivalent

movq $351, %rax Move the number 351 into 8-byte (quad) register “rax”

addq %rdi, %rsi Add the 64-bit value of %rdi to %rsi

movq (%rdi), %r8 Move the 64-bit data at the address stored in %rdi to %r8

leaq (%rax,%rax,8), %rax Compute 9 * %rax, and store the 64-bit result in %rax

Functions (briefly)
Similar to C - functions take arguments and can return a value.

Arguments:

● First argument is stored in %rdi, second in %rsi, third in %rdx.
● Arguments have to be copied into registers before the function is called.

Return:

● By convention, %rax is used for the return value.

More on this (function calls, more arguments, etc.) in lecture!

Exercise!

Exercise 1
Symbolically, what does the following code return? Remember, register %rax is used to store
the return value.

movl (%rdi), %eax # %rdi -> x
leal (%eax,%eax,2), %eax # %rax -> r
addl %eax, %eax
andl %esi, %eax # %esi -> y
subl %esi, %eax
ret

*x
*x * 3
(*x * 3) * 2
(*x * 6) & y
((*x * 6) & y) - y

Conditionals

Condition Codes

Condition codes include the zero (ZF), sign (SF), carry (unsigned overflow, CF), and
(signed, OF) overflow flags. They are stored on the processor in their own register.

- They are implicitly set by arithmetic operations:
- addq src, dst

- r = dst + src (result used to set flags)
- There are also instructions to only set the condition codes:

- cmp a, b
- r = b - a (result sets flags, but is not stored)

- test a, b
- r = a & b (result sets flags, but is not stored)

Control Flow
The condition codes are often used in
combination with j* (jump) and set*
instructions.

These instructions take one operand and
“change the instruction pointer” (j*) or set given
byte (set*) respectively depending on different
combinations of the condition codes.

“change the instruction pointer” => Jump to
execute different instructions. We will cover
how these relate next week!

Exercise 2
Write an equivalent C function for the following x86-64 code:

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

int mystery(? x, int y, int z)

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

int mystery(? x, int y, int z) {
 if ()

 else

}

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

int mystery(? x, int y, int z) {
 if (z >= 0 && z < y)

 else

}

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

int mystery(int *x, int y, int z) {
 if (z >= 0 && z < y)

return x[z];

 else

}

Exercise 2

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret

int mystery(int *x, int y, int z) {
 if (z >= 0 && z < y)

return x[z];

 else
return 0;

}

Exercise 3
Convert the following C function into x86-64 assembly code. You are not being judged on
the efficiency of your code – just correctness.

long happy(long *x, long y, long z) {
if (y > z)

return z + y;
else

 return *x;
}

Exercise 3
Convert the following C function into x86-64 assembly code. You are not being judged on
the efficiency of your code – just correctness.

happy:
cmpq %rdx, %rsi
jle .else
leaq (%rdx, %rsi), %rax
ret

.else:
movq (%rdi), %rax
ret

Multiple other possibilities (e.g.
switch ordering of if/else clauses,
replace lea with mov/add instruction
pair).

GDB!

The GNU Debugger (GDB)

The GNU Debugger (GDB) is a powerful debugging tool that will be critical to Lab 2
and Lab 3 and is a useful tool to know as a programmer moving forward.

There are tutorials and reference sheets available on the course webpage.

Make sure that you’re familiar with GDB because you’ll be using it a lot on labs 2
and 3.

Take some time to learn helpful commands like bt (backtrace) and
tui/layout.

Tutorial time!

That’s All, Folks!

Thanks for attending section! Feel free to stick
around for a bit if you have quick questions
(otherwise post on Ed or go to office hours).

See you all next week! :-)

