
CSE 351 Section 7 – Caches
Hi there! Welcome back to section, we’re happy that you’re here ☺

Locality!
Recall that we have two types of locality that we can have in code:

Temporal locality: when recently referenced items are likely to be referenced again in the near future.
Spatial locality: when nearby addresses tend to be referenced close together in time.

For each type of locality, can you give an example of when we might see it in code?

Temporal Locality:

Accessing a sum counter over and over; reading and
writing to the same variable; etc.

Spatial Locality:

Accessing a[0] in an array, then a[1], then a[2] in order;
accessing the first field in a struct, then the second, then
the third; etc.

Accessing a Direct-Mapped Cache (Hit or Miss?)
Assume the cache has block size and is in the current state shown (you can ignore "—").𝐾 = 4
All values are shown in hex. Tag fields are padded, and bytes of the cache blocks are shown in full. The word size
for the machine with these caches is 12 bits (i.e. addresses are 12 bits long) and the machine is little-endian.

Direct-Mapped:
Set Valid Tag

(8
bits)

B0 B1 B2 B3 Set Valid Tag
(8

bits)

B0 B1 B2 B3

0 1 15 63 B4 C1 A4 8 0 — — — — — Offset bits: 2
1 0 — — — — — 9 1 00 01 12 23 34
2 0 — — — — — A 1 01 98 89 CB BC
3 1 0D DE AF BA DE B 0 1E 4B 33 10 54 Index bits: 4
4 0 — — — — — C 0 — — — — —
5 0 — — — — — D 1 11 C0 04 39 AA
6 1 13 31 14 15 93 E 0 — — — — — Tag bits: 6
7 0 — — — — — F 1 0F FF 6F 30 0

Hit or Miss? Data returned
a) Read 1 byte at 0x7AC Miss —
b) Read 1 byte at 0x024 Hit 0x01
c) Read 2 bytes at 0x34E Hit 0xDEBA

2-way Set Associative:
Set Valid Tag

(8
bits)

B0 B1 B2 B3 Set Valid Tag
(8

bits)

B0 B1 B2 B3

0 0 — — — — — 0 0 — — — — — Offset bits: 2
1 0 — — — — — 1 1 2F 01 20 40 03
2 1 03 4F D4 A1 3B 2 1 0E 99 09 87 56
3 0 — — — — — 3 0 — — — — — Index bits: 3
4 0 06 CA FE F0 0D 4 0 — — — — —
5 1 21 DE AD BE EF 5 0 — — — — —
6 0 — — — — — 6 1 37 22 B6 DB AA Tag bits: 7
7 1 11 00 12 51 55 7 0 — — — — —

Hit or Miss? Data returned
a) Read 1 byte at 0x435 Hit 0xAD
b) Read 1 byte at 0x388 Miss —

Fully Associative:
Set Valid Tag

(12
bits)

B0 B1 B2 B3 Set Valid Tag
(12

bits)

B0 B1 B2 B3

0 1 1F4 00 01 02 03 0 0 — — — — — Offset bits: 2
0 0 — — — — — 0 1 0AB 02 30 44 67
0 1 100 F4 4D EE 11 0 1 034 FD EC BA 23
0 1 077 12 23 34 45 0 0 — — — — — Index bits: 0
0 0 — — — — — 0 1 1C6 00 11 22 33
0 1 101 DA 14 EE 22 0 1 045 67 78 89 9A
0 0 — — — — — 0 1 001 70 00 44 A6 Tag bits: 10
0 1 016 90 32 AC 24 0 0 — — — — —

Hit or Miss? Data returned
a) Read 1 byte at 0x1DD Hit 0x23
b) Read 1 byte at 0x719 Hit 0x11
c) Read 1 byte at 0x2AA Miss —

Code Analysis
Consider the following code that accesses a two-dimensional array (of size 64 64 ints).×
Assume we are using a direct-mapped, 1 KiB cache with 16 B block size, and that the cache starts cold.
Also assume that the variables sum, i, and j are stored in registers.

int sum = 0;
for (int i = 0; i < 64; i++)

for (int j = 0; j < 64; j++)
sum += array[i][j]; // assume &array = 0x600000

a) What is the miss rate of the execution of the entire loop?
Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4
accesses of the array. This means this miss rate is = 0.25 = 25%4 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡

16 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 = 1 𝑏𝑙𝑜𝑐𝑘
4 𝑖𝑛𝑡𝑠

b) If we have an average memory access time (AMAT) of 60 ns and a hit time of 10 ns, what is the miss
penalty?

With the 25% miss rate from part (a), we have 10 + 0.25 * MP = 60. Solving for MP tells us the miss penalty
is 200 ns.

c) What code modifications can change the miss rate? Brainstorm before trying to analyze.
Possible answers: switch the loops (i.e. make j the outer loop and i the inner loop), switch j and i in the
array access, make the array a different type (e.g. char[][], long[][], etc.), make array an array of Linked
Lists or a 2-level array, etc.

d) What cache parameter changes (size, associativity, block size) can change the miss rate?
Let’s consider each of the three parameters individually.

First, let’s consider modifying the size of the cache. Will it change the miss rate?

No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be
pulling the same amount of data each miss, and we will still have to go to memory every time we exhaust
that data

Next, let’s consider modifying the associativity of the cache. Will it change the miss rate?
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in contiguous
memory (thanks arrays!), booting old data to replace it with new data isn't an issue.

Finally, let’s consider modifying the block size of the cache. Will it change the miss rate?
Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see why
this is the case)

So, in conclusion, changing block size can change the miss rate. Changing size or associativity will NOT
change the miss rate.

NOTE: Remember that the results we got were for this specific example. There are some code examples in
which changing the size or associativity of the cache will change the miss rate.

Cache Simulator!
If you need help on using the cache sim, take a look at additional supplemental material that will guide you through
using the cache sim (posted with today’s section handouts)! We haven’t covered all the material contained in the
cache simulator yet, but we hope you’ll find it useful for lab 4 and corresponding homework assignments.

