
 CSE 351 Section 8 – More Caches, Processes & Concurrency
 Hi there! Welcome back to section, we’re happy that you’re here ☺

 Write Policies

 Write Hit
 Write Through

 - Write to “next level” directly
 Write Back

 - Defer writing until cache line we wrote to is evicted
 - Requires a “dirty bit” that keeps track of modi�ications
 - Only write on eviction if “dirty bit” is set

 Write Miss
 Write Allocate (fetch on write)

 - Load data into cache �irst (akin to a read)
 - Then write to cache
 - Good for locality if adjacent writes or reads follow

 No-write Allocate (write around)
 - Write to “next level” directly

 Practice Cache Exam Problem

 (11 pts)
 We have a 64 KiB address space. The cache is a 1 KiB, direct-mapped cache using 256-byte blocks with write-back
 and write-allocate policies.

 a) Calculate the TIO address breakdown for:

 Tag Index Offset
 16 − 2 − 8 = 6 🡪 2 𝐶𝑎𝑐ℎ𝑒

 𝐵𝑙𝑜𝑐𝑘 = 2 10

 2 8 = 2 2 🡪 8 2 8 = 256

 b) During some part of a running program, the cache’s management bits are as shown below. Four options for the
 next two memory accesses are given (R = read, W = write). Circle the option that results in data from the
 cache being written to memory .

 Line Valid Dirty Tag
 00 0 0 1000 01
 01 1 1 0101 01
 10 1 0 1110 00
 11 0 0 0000 11

 Note that, since the last 8 bits form the offset, we can ignore the last two hex digits for this problem.

 (1) R 0x4C00, W 0x5C00 (2) W 0x5500, W 0x7A00

 (3) W 0x2300, R 0x0F00 (4) R 0x3000, R 0x3000

 c) The code snippet below loops through a character array. Give the value of LEAP that results in a Hit Rate of
 15/16.

 #define ARRAY_SIZE 8192
 char string[ARRAY_SIZE]; // &string = 0x8000

 for(i = 0; i < ARRAY_SIZE; i += LEAP) {

 string[i] |= 0x20; // to lower

 }

 32

 d) For the loop shown in part (c), let LEAP = 64. Circle ONE of the following changes that increases the hit rate:

 Increase Block Size Increase Cache Size Add an L2 Cache Increase LEAP

 e) What are the three kinds of cache misses? When do they occur? Circle the kind of miss that happens in part (c).

 Compulsory: occurs the �irst time
 a block is accessed—no way to
 avoid this (a.k.a. cold miss)

 Con�lict: occurs when multiple
 blocks map to the same slot in
 the cache—could be avoided if
 the cache had a greater
 associativity, or perhaps if using
 different access pattern

 Capacity: occurs when the set of
 active cache blocks (“working
 set”) evict each other because
 there’s not enough space in the
 cache—even if it were
 fully-associative, they wouldn’t
 all �it

 Benedict Cumbercache
 Given the following sequence of access results (addresses are given in decimal) on a cold/empty cache of size 16
 bytes, what can we deduce about its properties? Assume an LRU replacement policy.

 (0, Miss) , (8, Miss) , (0, Hit) , (16, Miss) , (8, Miss)

 1) What can we say about the block size?

 After access (1), values from address 0 to address [block size - 1] will be put in the cache. This is because
 caches load a full block from memory at a time and 0 will always be aligned to the beginning of a block.
 Thus, if access (2) to address 8 is a miss, it means that the block size must be ≤ 8 .

 2) Assuming that the block size is 8 bytes, can this cache be… (Hint: draw the cache and simulate it)
 a. Direct-mapped?

 Index Address (not tag)

 0 0x0 0x10

 1 0x8

 Does this cache work for the access results?

 Yes, Yes, Yes, Yes (evict 0), No (8 would still be in cache)

 b. 2-way set associative?

 Index Address (not tag)

 0 0x0

 0 0x8 0x10

 Does this cache work for the access results?

 Yes, Yes, Yes, Yes (evict 8 b/c it’s the least recently used), Yes (8 is no longer in cache)

 c. 4-way set associative?

 No, because the block size is 8, multiplied by 4 lines per set, and that’s 32B, which is already
 bigger than the entire cache.

 Fork and Concurrency
 Consider this code using Linux’s fork :

 int x = 7;
 if (fork()) {

 x++;
 printf(" %d ", x);
 fork();
 x++;
 printf(" %d ", x);

 } else {
 printf(" %d ", x);

 }

 What are all the different possible outputs (i.e. order of things printed) for this code?
 (Hint: there are four of them.)

 Note: fork() returns 0 to the child, and the child’s process ID (PID) to the parent.

 From our �irst fork, we know child 1 will print “7”, but since this print statement is not dependent on
 any other code (besides the initial fork()), it could be printed at any time.

 We also know the parent will have to print “8” before the second call to fork() , meaning that the “8” is
 printed before the “9”s. Since the parent and child 2 both print out “9”, even if the ordering of their
 prints changes, the output will not.

 Possible orderings:
 ● 7 8 9 9
 ● 8 7 9 9
 ● 8 9 7 9
 ● 8 9 9 7

