
CSE 351 Section V
Virtual Memory

● Lab 4
○ Due Mon, Nov 28th

● Homework 22
○ Due Wed, Nov 30th

● Homework 24
○ Due Fri, Dec 2nd

● Homework 25
○ Due Wed, Dec 7th

● Lab 5
○ Due Fri, Dec 9th

● Take-home Final
○ From Mon, Dec 12th to Wed, Dec 14th

Administrivia - We’re in the final stretch!

2

Virtual Memory

3

A summary of virtual memory

Virtual memory is a huge imaginary region of
storage for processes.

Processes believe they have 2n bytes worth of
memory available (where n is the word-size).

A summary of virtual memory

Virtual memory is a huge imaginary region of
storage for processes.

Processes believe they have 2n bytes worth of
memory available (where n is the word-size).

Physical and virtual memory is broken up into
fixed-size “pages”.

Virtual pages in-use will map to a physical page.

Excess pages in-use are located on the ʻswap spaceʼ
of the disk and ʻswappedʼ in when needed.

If we run out of physical
memory for processes, then
only the most recently-used
pages are left in memory.

Where are virtual and physical addresses used?

Caches, Physical Memory and Disk
Use physical addresses to reference data

CPU, Registers, and Processes
Use virtual addresses to
reference data

Page Tables!

● Specific for each process
● Job is to map virtual page numbers (VPN) to

physical page numbers (PPN)
● Contains page table entries (PTE)

○ Has a PTE for every possible VPN
○ PTE is made up of PPN + management bits

● Stored in physical memory

How do we convert virtual addresses to physical addresses?

An example of a page table

Accessing page tables is expensive...

Solution: Make a cache for our PTEs!

● Accessing page tables is expensive because page tables are located in physical
memory

● Page tables store all PTEs for all possible virtual pages

○ Processes donʼt need access to all of those PTEs, only a small subset of the PTEs!

Translation Lookaside Buffer (TLB)

The TLB is a cache of the page table

● Stores the most recently used PTEs
● TLB is super fast to access compared to accessing page tables in memory

High-level, simplified view of how memory is accessed

CPU Chip

CPU

Page Tables

Physical Memory

Key

Helps translate virtual to physical address

Recently
used pages

Caches

L1 L2 L3

Data for processes

Disk

Swap space

Pages that donʼt fit in
memory

MMU

PTBR

TLB

Page
Block

Address Translation Flowchart

Note that the width of the
arrows is intended to indicate
relative latencies of different
pathways, though definitely not
to scale.

What causes the
following to occur?
● TLB Hit
● TLB Miss
● Page Table Hit
● Page Fault
● Protection Fault

Address Manipulation
The image below shows the way that the requested address gets manipulated during a data fetch.

Virtual Address → Physical Address
1. Do TLB TIO breakdown on the

virtual address, check TLB
2. On a TLB miss, do a VPN + PO

breakdown on the virtual
address, access the PT

Physical address → Requested Data
1. Do a Cache TIO breakdown on

the physical address

Other Useful Virtual Memory Slides

Also check out the Edstem lesson for other useful PDFs!

Address Translation Steps: Page Hit
Pretending we donʼt have a TLB...

1. Processor sends VA to MMU
2. Using the PTBR to find PT, MMU

accesses PTE for the respective VPN
3. MMU receives PTE, sees valid bit is 1

(Page Hit!), and gets the PA
4. MMU sends PA to cache/memory

requesting data
5. Cache/memory returns data to

processor

Page Faults

● A page fault occurs When a PTE references a page that isnʼt in physical memory.
○ A page is kicked out of memory
○ The requested page is brought into memory

Pretending we donʼt have a TLB...

1. Processor send VA to MMU
2. Using the PTBR to find PT, MMU

accesses PTE for the respective VPN
3. MMU receives PTE, sees valid bit is 0

(Page Fault!), and gets the PA
4. MMU triggers page fault exception
5. Handler identifies victim page (if

victim is dirty, pages it out to disk)
6. Handler pages in new page and

updates PTE in memory
7. Handler restarts faulting instruction

for a guaranteed page hit
a. (see steps for a page hit)

Address Translation Steps: Page Fault

1. Processor sends VA to
MMU

2. MMU checks TLB for PTE
for respective VPN

3. MMU receives PTE, sees
valid bit is 1 (TLB Hit!),
and gets the PA
a. Assuming we have

access
4. MMU sends PA to

cache/memory
requesting data

5. Cache/memory returns
data to processor

TLB Hit

A TLB hit eliminates an expensive memory
access to the page table located in memory

1. Processor sends VA to
MMU

2. MMU checks TLB for PTE
for respective VPN, valid
bit is 0 (TLB miss!)

3. MMU fetches PTE from
page table
a. Possible page fault

4. PTE is loaded into TLB
5. MMU sends PA to

cache/memory requesting
data
a. Assuming we have

access

TLB Miss

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare.

Virtual Memory Exercise Solutions

Exercise 4: Fill in the table (row 1)
n

m

p

VA Width
(n)

PA Width
(m)

Page Size
(P)

VPN Width PPN Width Bits in PTE
(assume V,D,R,W,X)

32 32 16 KiB
16 KiB = 214 B

p = 14

32 - 14 = 18 32 - 14 = 18 18 + 5 = 23

Exercise 4: Fill in the table (row 2)
n

m

p

VA Width
(n)

PA Width
(m)

Page Size
(P)

VPN Width PPN Width Bits in PTE
(assume V,D,R,W,X)

32 26 13
p = 26 - 13 = 13

213 B = 8 KiB 32 - 13 = 19 13 + 5 = 18

Exercise 4: Fill in the table (row 3)
n

m

p

VA Width
(n)

PA Width
(m)

Page Size
(P)

VPN Width PPN Width Bits in PTE
(assume V,D,R,W,X)

32 21 2222 - 5 = 17p = 32 - 17 = 15
215 B = 32 KiB21 + 15 = 36

Exercise 4: Fill in the table (row 4)
n

m

p

VA Width
(n)

PA Width
(m)

Page Size
(P)

VPN Width PPN Width Bits in PTE
(assume V,D,R,W,X)

32 KiB 25 2626 - 5 = 2125 + 15 = 40
P = 215 B
p = 15

21 + 15 = 36

Exercise 4: Fill in the table (row 5)
n

m

p

VA Width
(n)

PA Width
(m)

Page Size
(P)

VPN Width PPN Width Bits in PTE
(assume V,D,R,W,X)

64 48 2929 - 5 = 24p = 64 - 48 = 16
216 B = 64 KiB24 + 16 = 40

● Processor: 16-bit addresses, 256-byte pages
● TLB: 8-entry fully associative with LRU replacement

○ Track LRU (shown in decimal) using 3 bits to encode the order in which pages were accessed, with 0
being the most recent

● Assume that all page table entries that are not in the initial TLB have read and write
permissions, but no execute permission (i.e. R = 1, W = 1, X = 0).

○ OS will assign new pages starting at PPN 0x20, with read and write permissions but no execute
permission (i.e. R = 1, W = 1, X = 0).

● At some time instant, the TLB for the current process is in the initial state given.
● Fill in the final state of the TLB according to the access pattern below. For each

access, indicate if it leads to a:
○ a) TLB hit? b) TLB miss? c) Page fault? d) Protection fault?

Exercise 5

First, letʼs figure out the relevant numbers:
● 16-bit addresses means n = 16
● 256-byte pages means P = 256

○ so p = log2(256) = 8

● VPN width = n - p = 8 bits
● TLB is fully associative, so S = 1, which means TLBI bits = log2(1) = 0

○ so TLBT = VPN
○ Because the VPN width is 8 bits, we can just read the first 2 hex digits as both the VPN and TLBT

● LRU column will help us figure out which entries to kick out
○ also need to make sure we update LRU every time the TLB is accessed

Exercise 5

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 0

0x02 0x18 1 1 0 0 0 6

0x10 0x13 1 1 1 1 1 1

0x20 0x12 1 0 1 0 0 5

0x00 0x00 0 0 0 0 0 7

0x11 0x14 1 1 0 0 0 4

0xAC 0x15 1 1 0 0 0 2

0x34 0x16 1 1 1 0 1 3

1) Read 0x11F0

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 1

0x02 0x18 1 1 0 0 0 6

0x10 0x13 1 1 1 1 1 2

0x20 0x12 1 0 1 0 0 5

0x00 0x00 0 0 0 0 0 7

0x11 0x14 1 1 0 0 0 0

0xAC 0x15 1 1 0 0 0 3

0x34 0x16 1 1 1 0 1 4

● → TLBT = 0x11
● → TLB Hit

○ PTE w/ matching tag is
present and valid

● → No protection fault
○ has Read access

1) Read 0x11F0

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 1

0x02 0x18 1 1 0 0 0 6

0x10 0x13 1 1 1 1 1 2

0x20 0x12 1 0 1 0 0 5

0x00 0x00 0 0 0 0 0 7

0x11 0x14 1 1 0 0 0 0

0xAC 0x15 1 1 0 0 0 3

0x34 0x16 1 1 1 0 1 4

2) Write 0x0301

● → TLBT = 0x03
● → TLB Miss

○ Tag is not in TLB
● → No page fault

○ PTE exists in memory
○ Load PPN 0x17 into the

invalid/LRU entry of the TLB
● → No protection fault

○ has Write access
○ update Dirty bit

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 2

0x02 0x18 1 1 0 0 0 7

0x10 0x13 1 1 1 1 1 3

0x20 0x12 1 0 1 0 0 6

0x03 0x17 1 1 1 0 1 0

0x11 0x14 1 1 0 0 0 1

0xAC 0x15 1 1 0 0 0 4

0x34 0x16 1 1 1 0 1 5

2) Write 0x0301

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 2

0x02 0x18 1 1 0 0 0 7

0x10 0x13 1 1 1 1 1 3

0x20 0x12 1 0 1 0 0 6

0x03 0x17 1 1 1 0 1 0

0x11 0x14 1 1 0 0 0 1

0xAC 0x15 1 1 0 0 0 4

0x34 0x16 1 1 1 0 1 5

3) Write 0x20AE

Exercise 5

● → TLBT = 0x20
● → TLB Hit

○ PTE w/ matching tag is
present and valid

● → No protection fault
○ has Write access

● update Dirty bit

TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 3

0x02 0x18 1 1 0 0 0 7

0x10 0x13 1 1 1 1 1 4

0x20 0x12 1 0 1 0 1 0

0x03 0x17 1 1 1 0 1 1

0x11 0x14 1 1 0 0 0 2

0xAC 0x15 1 1 0 0 0 5

0x34 0x16 1 1 1 0 1 6

3) Write 0x20AE

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 3

0x02 0x18 1 1 0 0 0 7

0x10 0x13 1 1 1 1 1 4

0x20 0x12 1 0 1 0 1 0

0x03 0x17 1 1 1 0 1 1

0x11 0x14 1 1 0 0 0 2

0xAC 0x15 1 1 0 0 0 5

0x34 0x16 1 1 1 0 1 6

4) Write 0x0532

● → TLBT = 0x05
● → TLB Miss

○ Tag is not in TLB
● → Page Fault

○ PTE is not valid for VPN=0x05
○ Assign PPN 0x20 to VPN 0x05

● Update TLB PTE, replace LRU
● Update Dirty Bit

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 4

0x05 0x20 1 1 1 0 1 0

0x10 0x13 1 1 1 1 1 5

0x20 0x12 1 0 1 0 1 1

0x03 0x17 1 1 1 0 1 2

0x11 0x14 1 1 0 0 0 3

0xAC 0x15 1 1 0 0 0 6

0x34 0x16 1 1 1 0 1 7

4) Write 0x0532

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 4

0x05 0x20 1 1 1 0 1 0

0x10 0x13 1 1 1 1 1 5

0x20 0x12 1 0 1 0 1 1

0x03 0x17 1 1 1 0 1 2

0x11 0x14 1 1 0 0 0 3

0xAC 0x15 1 1 0 0 0 6

0x34 0x16 1 1 1 0 1 7

5) Read 0x0E15

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 5

0x05 0x20 1 1 1 0 1 1

0x10 0x13 1 1 1 1 1 6

0x20 0x12 1 0 1 0 1 2

0x03 0x17 1 1 1 0 1 3

0x11 0x14 1 1 0 0 0 4

0xAC 0x15 1 1 0 0 0 7

0x0E 0x21 1 1 1 0 0 0

5) Read 0x0E15

● → TLBT = 0x0E
● → TLB Miss

○ Tag is not in TLB
● → Page Fault

○ PTE is not valid for VPN=0x0E
○ Assign PPN 0x21 to VPN 0x05

● Update TLB PTE, replace LRU

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 5

0x05 0x20 1 1 1 0 1 1

0x10 0x13 1 1 1 1 1 6

0x20 0x12 1 0 1 0 1 2

0x03 0x17 1 1 1 0 1 3

0x11 0x14 1 1 0 0 0 4

0xAC 0x15 1 1 0 0 0 7

0x0E 0x21 1 1 1 0 0 0

6) Write 0xACFF

Write 0xACFF → TLBT = 0xAC, TLB Hit,
Protection fault

● → TLBT = 0xAC
● → TLB Hit

○ PTE w/ matching tag is
present and valid

● → Protection fault
○ does not have Write access

● → Still update LRU

Exercise 5
TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 6

0x05 0x20 1 1 1 0 1 2

0x10 0x13 1 1 1 1 1 7

0x20 0x12 1 0 1 0 1 3

0x03 0x17 1 1 1 0 1 4

0x11 0x14 1 1 0 0 0 5

0xAC 0x15 1 1 0 0 0 0

0x0E 0x21 1 1 1 0 0 1

6) Write 0xACFF

Exercise 5

TLBT PPN Valid R W X Dirty LRU

0x01 0x11 1 1 1 0 1 6

0x05 0x20 1 1 1 0 1 2

0x10 0x13 1 1 1 1 1 7

0x20 0x12 1 0 1 0 1 3

0x03 0x17 1 1 1 0 1 4

0x11 0x14 1 1 0 0 0 5

0xAC 0x15 1 1 0 0 0 0

0x0E 0x21 1 1 1 0 0 1

Final TLB:

That’s All, Folks!
Thanks for attending section! Remember to post on Ed or go to OH if you have questions.

See you all next week and good luck on lab 4.

42

