CSE351, Autumn 2023

o
=
£
S
g
8
(o)
o
2
a
<
@
)
Q
X
&
S
—

YA UNIVERSITY of WASHINGTON

X86-64 Programming I

CSE 351 Autumn 2023

-—=000~—_O~-0~0~-00~-000~~
oo-|°|l0‘° '0"00'000 lllll
——0~0e0=e00~000———meu- oo
-~ Q=0 = QO ~-000 "~ ==~ C0~-0O
C—=00~-000=c = ~== 00=—-0—=—
O0=-000 = w o = = 00 ==0===00.
000 = ccm= - CO==-Q===00=0=-0
llllll 00 ==0===Q00~—-nO0=-0~-
c——OO0= =0 =~ ==00===0-0-00-~
Q0= ===« -0 =00 == =~

Nikolas McNamee
Pedro Amarante

Renee Ruan
Simran Bagaria
Will Robertson

Naama Amiel

Cassandra Lam Nayha Auradkar

Connie Chen
David Dai

Malak Zaki

Teaching Assistants:

Instructor:
Justin Hsia
Afifah Kashif
Bhavik Soni
Dawit Hailu
Ellis Haker
Eyoel Gebre
Joshua Tan

http://xkcd.com/99/

http://xkcd.com/99/

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Relevant Course Information

+» hw7 due Monday, hw8 due Wednesday

+ Lab 1b due Monday (10/16) at 11:59 pm

" No major programming restrictions, but should avoid magic numbers by using C
macros (#tdefine)

" For debugging, can use provided utility functions print_binary_short() and
print_binary long()

= Pay attention to the output of aisle test and store test —failed tests will show
you actual vs. expected

" You have late day tokens available

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

x86-64 Programming |l

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Lesson Summary (1/2)

+» Memory Addressing Modes: The addresses used for accessing memory
in mov (and other) instructions can be computed in several different ways

= D(Rb,Ri,S) with base register, index register, scale factor, and displacement
compute the address Reg[Rb] + Reg[Ri]*S + D and is usually dereferenced by
instructions

" These map well to pointer arithmetic operations

+ Load effective address (1ea) instruction used to compute addresses and
perform basic arithmetic
" Doesn’t dereference the source memory operand, unlike all other instructions!

+» Extension instructions (movz, movs) allow us to zero and sign extend data
into longer widths

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Lesson Summary (2/2)

+» Terminology:
" Memory Operand: displacement, base register, index register, scale factor
= Extension instructions (movz, movs)
= Address computation instruction (1ea)

+ Learning Objectives:

= Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

= Use GDB tools to step through a running program and extract debugging
information from a program’s disassembly, the state of registers, and values at
specific memory locations.

+» What lingering questions do you have from the lesson?

X86-64 Programming ll=—

Context

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Extension Instructions (Review)

2 width speci‘FIea: b,uw, Q)g_
,A 1 2 4 bytes

+ movz__ src, dst # Move with zero extension
movs___ src, dst # Move with sign extension

= Copy from a smaller source value to a larger destination
- First suffix letter is size of source, second suffix letter is size of destination
- Recall: zero-extension always fills with 9, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

2 Exampleigﬁta shown in hex

/’—_B.) (o) '/_\ﬂ o
" movzbqg %al, %rbx P2 | 22 | 22 | 22| 22| 22 | ?? | FF)|<%rax
Zero-exenk ¥ bvte -
00 | 00 | 00 | 00 | 90 | 00 | @0 | FF |<%rbx

VS
2¢/o '(’-’d*’na\

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Extension Instructions (Review)

+ movz__ src, dst # Move with zero extension
movs___ src, dst # Move with sign extension

= Copy from a smaller source value to a larger destination
- First suffix letter is size of source, second suffix letter is size of destination
- Recall: zero-extension always fills with 9, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

4

+» Example: data shown in hex

U ntes potntey
" movsbl (%rax), %ebx 00 | 00 | 7F | FF 4 C6 | 1F | A4 | E8 |«%rax
N NN
P PP PP PP P ? PP P

Recall, any x86-64 instruction that stores S S (8@ SRR S w' : < MEM

into a 32-bit (suffix 1) register zeros out = —«—L)

the upper 4 bytes of the register. PO | 60 | 60 | @0 | FF | FF | FF | 80 |<%rbx

<

Zerp ot & eimn - extudh 8

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il

CSE351, Autumn 2023

GDB Demo

+» The movz and movs examples on a real machine!
= movzbq %al, 7%rbx
"= movsbl (%rax), %ebx

+ You will need to use GDB to get through Lab 2
= Useful debugger in this class and beyond!

« Pay attention to:
= Setting breakpoints (break)

= Stepping through code (step/next and stepi/nexti)

® Printing out expressions (print — works with regs & vars)
= Examining memory (X)

X86-64 Programming ll=—

Practice

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il

Group Work Time

+ During this time, you are encouraged to work on the following:
1) If desired, continue your discussion

2) Work on the lesson problems (solutions at the end of class)
3) Work on the homework problems

<« Resources:
® You can revisit the lesson material

= Work together in groups and help each other out
" Course staff will circle around to provide support

CSE351, Autumn 2023

11

YA UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Autumn 2023

Practice Questions (1/2)

+ D(Rb,R1,S) computes address Reg[Rb]+Reg[R1]*S+D
= Likely will get dereferenced, but that’s up to the instruction
= Default values: D =90, Reg[Rb] =0, Reg[Ri]=9,S=1

+» Assuming %rdx contains 0xF000 and %rcx contains 6x100, what
addresses are computed by the following memory operands?

. @x%(%r@}) ResTUD = OxFI0D+0<§ Oxfl0g

- (%r‘%[i,%r‘g() ResTRL) +Rgy T ¥AL O <100

x (%P%L"x,%r‘c{_%;(,4f k OxF 400

= @xge(,%rﬁ);(,Z)S ReyTRIV¥2 +0x30 OxAe0%0
OF 60012,

Ofudo K4 = OxAe0dd 12

YA/ UNIVERSITY of WASHINGTON L08: x86-64 Programming II CSE351, Autumn 2023

Practice Questions (2/2)

+» Which of the following x86-64 instructions correctly calculates

. v > must
%rax=9*%rdi? no ”‘fmosvgcﬁj/; o be lea
A X
B. moxg (,%rdi,9), %rax inva i syritax

]C.l leaq (%rdi,%rdi,8), %$rax Zorux = A*%d
D. mdwg (3rdi,%rdi,8), Srax %mx = Mem[A* 2l

13

