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Relevant Course Information

❖ Lab 2 due next Friday (10/27)

▪ Can start in earnest after today’s lecture!

▪ See GDB Tutorial Lesson and and Phase 1 walkthrough in Section 4 Lesson

❖ Midterm (take home, 11/2–11/4)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!
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https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf
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Procedures I
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Lesson Summary (1/2)

❖ Memory is organized into 5 segments (Stack, Heap, Static Data, Literals, 
Instructions/Code) based on data declaration and lifetime

▪ Goals: maximize use of space, manage data differently, apply separate permissions

▪ The Stack is at the highest addresses and grows downward; can manipulate using 
add, sub, push, and pop

❖ Procedure calling conventions for passing control and data

▪ call and ret pass control using %rip and a return address on the stack

▪ Return value: %rax, Arguments: %rdi, %rsi, %rdx, %rcx, %r8, %r9, Stack

❖ Stack organized into stack frames that hold a procedure instance’s data
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Lesson Summary (2/2)

❖ Terminology:

▪ Stack, Heap, Static Data, Literals, Instructions/Code

▪ Stack pointer (%rsp), push, pop

▪ Caller, callee, return address, call, ret

▪ Stack frames and stack discipline

❖ Learning Objectives:

▪ Determine the location/segment in memory that a piece of data will be stored 
based on the nature of that data (i.e., static, literals, etc.).

▪ Trace stack frame movement and creation.

❖ What lingering questions do you have from the lesson?
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Procedures I – Context
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Simplified Memory Layout
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Instructions

Literals

Static Data

Dynamic Data
(Heap)Memory

Addresses

High
Addresses

Low
Addresses

0x0…0

0xF…F

Immutable literals/constants (e.g., "example")

Static variables (including global variables)

Variables allocated with new or malloc

Local variables and procedure context

Program code

What Goes Here:Address Space:

Stack
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x86-64 Linux Memory Layout

❖ Stack

▪ Runtime stack has 8 MiB limit

❖ Heap

▪ Dynamically allocated as needed

▪ malloc(), calloc(), new, …

❖ Statically allocated data (Data)
▪ Read-only:  string literals

▪ Read/write:  global arrays and variables

❖ Code / Shared Libraries

▪ Executable machine instructions

▪ Read-only
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Hex Address

0x00007FFFFFFFFFFF

0x000000

0x400000
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(non-testable) 
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Stack Overflow

❖ When the stack pointer exceeds the stack bounds (segmentation fault)

▪ In theory: when it collides with the Heap

▪ In x86-64 Linux, when it exceeds 8 MiB limit

❖ Causes?

▪ Infinite/deep recursion

▪ Very large local variables

❖ Fixes?

▪ Use iterative solution, compiler tail-call optimization

▪ Allocate large variables elsewhere (more on the Heap later this quarter)
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Aside: Stack Overflow

❖ Has nothing to do with actual stack overflow – named based on poll of 
blog users; some of the non-winning options:

▪ algorithmical

▪ bitoriented

▪ dereferenced

▪ fellowhackers

▪ humbleprogrammers

▪ privatevoid

▪ shiftleft1

▪ understandrecursion

❖ Crowd-sourced their logo for $512
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Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Naming/etymology plays a big role in learning

▪ Which new terms in this class have been the most intuitive for you to learn vs. the 
most difficult?

▪ What do you think goes into a good vs. bad name more generally in computer 
science?

11



CSE351V00:  IntroductionL11: Procedures I CSE351, Autumn 2023

12

Procedures I – Practice
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Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the lesson problems (solutions at the end of class)

3) Work on the homework problems

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support
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Practice Questions (1/2)

❖ How does the stack change after executing the following instructions?
pushq %rbp
subq $0x18, %rsp

❖ For the following function, which registers do we know must be used?
void* memset(void* ptr, int value, size_t num);
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Practice Questions (2/2)

❖ Answer the following questions about when main() is run (assume x
and y stored on the Stack):

▪ Higher/larger address:  x or y?

▪ How many total stack frames 
are created?

▪ What is the maximum depth
(# of frames) of the Stack?

15

int main() {
int i, x = 0;
for(i=0;i<3;i++)

x = randSum(x);
printf("x = %d\n",x);
return 0;

}

int randSum(int n) {
int y = rand()%20;
return n+y;

}

A. 1 B. 2 C. 3 D. 4


