
CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Procedures I
CSE 351 Autumn 2023

Instructor:
Justin Hsia

Teaching Assistants:
Afifah Kashif Malak Zaki
Bhavik Soni Naama Amiel
Cassandra Lam Nayha Auradkar
Connie Chen Nikolas McNamee
David Dai Pedro Amarante
Dawit Hailu Renee Ruan
Ellis Haker Simran Bagaria
Eyoel Gebre Will Robertson
Joshua Tan

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Relevant Course Information

❖ Lab 2 due next Friday (10/27)

▪ Can start in earnest after today’s lecture!

▪ See GDB Tutorial Lesson and and Phase 1 walkthrough in Section 4 Lesson

❖ Midterm (take home, 11/2–11/4)

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!

2

https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

3

Procedures I

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Lesson Summary (1/2)

❖ Memory is organized into 5 segments (Stack, Heap, Static Data, Literals,
Instructions/Code) based on data declaration and lifetime

▪ Goals: maximize use of space, manage data differently, apply separate permissions

▪ The Stack is at the highest addresses and grows downward; can manipulate using
add, sub, push, and pop

❖ Procedure calling conventions for passing control and data

▪ call and ret pass control using %rip and a return address on the stack

▪ Return value: %rax, Arguments: %rdi, %rsi, %rdx, %rcx, %r8, %r9, Stack

❖ Stack organized into stack frames that hold a procedure instance’s data

4

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Lesson Summary (2/2)

❖ Terminology:

▪ Stack, Heap, Static Data, Literals, Instructions/Code

▪ Stack pointer (%rsp), push, pop

▪ Caller, callee, return address, call, ret

▪ Stack frames and stack discipline

❖ Learning Objectives:

▪ Determine the location/segment in memory that a piece of data will be stored
based on the nature of that data (i.e., static, literals, etc.).

▪ Trace stack frame movement and creation.

❖ What lingering questions do you have from the lesson?

5

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

6

Procedures I – Context

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Simplified Memory Layout

7

Instructions

Literals

Static Data

Dynamic Data
(Heap)Memory

Addresses

High
Addresses

Low
Addresses

0x0…0

0xF…F

Immutable literals/constants (e.g., "example")

Static variables (including global variables)

Variables allocated with new or malloc

Local variables and procedure context

Program code

What Goes Here:Address Space:

Stack

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

x86-64 Linux Memory Layout

❖ Stack

▪ Runtime stack has 8 MiB limit

❖ Heap

▪ Dynamically allocated as needed

▪ malloc(), calloc(), new, …

❖ Statically allocated data (Data)
▪ Read-only: string literals

▪ Read/write: global arrays and variables

❖ Code / Shared Libraries

▪ Executable machine instructions

▪ Read-only

8

Hex Address

0x00007FFFFFFFFFFF

0x000000

0x400000

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

This is extra
(non-testable)

material

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Stack Overflow

❖ When the stack pointer exceeds the stack bounds (segmentation fault)

▪ In theory: when it collides with the Heap

▪ In x86-64 Linux, when it exceeds 8 MiB limit

❖ Causes?

▪ Infinite/deep recursion

▪ Very large local variables

❖ Fixes?

▪ Use iterative solution, compiler tail-call optimization

▪ Allocate large variables elsewhere (more on the Heap later this quarter)

9

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Aside: Stack Overflow

❖ Has nothing to do with actual stack overflow – named based on poll of
blog users; some of the non-winning options:

▪ algorithmical

▪ bitoriented

▪ dereferenced

▪ fellowhackers

▪ humbleprogrammers

▪ privatevoid

▪ shiftleft1

▪ understandrecursion

❖ Crowd-sourced their logo for $512
10

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Discussion Questions

❖ Discuss the following question(s) in groups of 3-4 students

▪ I will call on a few groups afterwards so please be prepared to share out

▪ Be respectful of others’ opinions and experiences

❖ Naming/etymology plays a big role in learning

▪ Which new terms in this class have been the most intuitive for you to learn vs. the
most difficult?

▪ What do you think goes into a good vs. bad name more generally in computer
science?

11

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

12

Procedures I – Practice

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the lesson problems (solutions at the end of class)

3) Work on the homework problems

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

13

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Practice Questions (1/2)

❖ How does the stack change after executing the following instructions?
pushq %rbp
subq $0x18, %rsp

❖ For the following function, which registers do we know must be used?
void* memset(void* ptr, int value, size_t num);

14

CSE351V00: IntroductionL11: Procedures I CSE351, Autumn 2023

Practice Questions (2/2)

❖ Answer the following questions about when main() is run (assume x
and y stored on the Stack):

▪ Higher/larger address: x or y?

▪ How many total stack frames
are created?

▪ What is the maximum depth
(# of frames) of the Stack?

15

int main() {
int i, x = 0;
for(i=0;i<3;i++)

x = randSum(x);
printf("x = %d\n",x);
return 0;

}

int randSum(int n) {
int y = rand()%20;
return n+y;

}

A. 1 B. 2 C. 3 D. 4

