
CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Processes II, Virtual Memory I
CSE 351 Autumn 2023

Instructor:
Justin Hsia

Teaching Assistants:
Afifah Kashif Malak Zaki
Bhavik Soni Naama Amiel
Cassandra Lam Nayha Auradkar
Connie Chen Nikolas McNamee
David Dai Pedro Amarante
Dawit Hailu Renee Ruan
Ellis Haker Simran Bagaria
Eyoel Gebre Will Robertson
Joshua Tan https://ptbd.jwels.berlin/comic/20/

https://ptbd.jwels.berlin/comic/20/

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Relevant Course Information

❖ HW24 due Friday (12/1), HW25 due next Wednesday

❖ Lab 4 due tonight, Lab 5 due Dec. 7

❖ No lessons in Week 11 – “normal” lectures

❖ Final Dec. 11-13

▪ Structure will be very similar to the midterm

▪ Not cumulative: focused on post-midterm material

▪ Final review section on 12/7

▪ Final review session planned for Zoom on 12/8

▪ Regrade requests Dec. 17

2

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

3

Processes II, Virtual
Memory I

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Lesson Summary (1/4)

❖ The fork-exec model

▪ Every process is assigned a unique process ID (pid)

▪ Every process has a parent process except for init/system (pid 1)

▪ fork() returns 0 to child, child’s PID to parent

▪ exec() replaces the current process’ code and address space with the code for a
different program

4

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

Stack

Code: /usr/bin/bash
Data

Heap

Parent Child
exec*()

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Lesson Summary (2/4)

❖ Terminating a process

▪ Return from main() or explicit call to exit(status)

▪ Passes a status code (main’s return value or exit’s argument) to parent process
• 0 for normal exit, nonzero for abnormal exit

❖ Processes and resources

▪ A terminated (zombie) process still consumes system resources until reaped

▪ Child is reaped when parent process terminates or explicitly calls wait/waitpid

▪ Orphaned children reaped by init/systemd

5

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Lesson Summary (3/4)

❖ Concurrency and process diagrams

▪ Concurrently executing processes are scheduled non-deterministically by the
operating system

▪ A process graph is a useful tool for capturing the partial ordering of statements in a
concurrent program
• Vertices are program statements, directed edges capture sequencing within a process

• Flexible visualization tool:

6

printf--x printffork

Child

Byex=1

printf printf++x

Bye

Parent

x=2

x=0

printf wait printffork

printf

exit

HP

HC

CT
Bye

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Lesson Summary (4/4)

❖ Virtual memory is software’s perspective (e.g., memory layout),
physical memory is hardware’s perspective (e.g., memory hierarchy)

❖ Virtual memory manages the memory for multiple concurrently running
processes (implements protection and sharing)

▪ Each process has its own virtual address space that gets mapped into parts of the
physical address space

▪ When run out of physical address
space, put least recently used data
in disk

7

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Data (int/float)

8: ...

CPU

Virtual
address

(VA)

CPU Chip

0x40x4100

Memory Management Unit

Process 1

Process 𝑛
...

Disk

“Swap Space”

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Lesson Q&A

❖ Terminology:

▪ Processes: fork-exec model, process ID, exec*(), exit(), wait(), waitpid()

▪ init/systemd, reaping, zombie processes

▪ Virtual memory: virtual addressing, physical addressing, indirection

❖ Learning Objectives:

▪ Design process graphs to determine potential orderings of concurrent execution.

▪ Write code that uses system calls to spawn, overlay, reap, and terminate processes
on Linux x86-64.

▪ Explain the benefits behind why virtual memory is used instead of only physical
memory address space.

❖ What lingering questions do you have from the lesson?
8

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

9

Processes II, Virtual
Memory I – Practice

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Processes Practice Question

❖ Are the following sequences of outputs possible?

10

void nestedfork() {

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

Seq 2:
L0

Bye

L1

L2

Bye

Bye

Seq 1:
L0

L1

Bye

Bye

Bye

L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

VM Practice Questions

❖ On a 64-bit machine currently running 8 processes, how much virtual
memory is currently available?

❖ True or False: A 32-bit machine with 8 GiB of RAM installed would never
use all of it (in theory).

11

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

12

Processes II, Virtual
Memory I – Context

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Processes Demos

❖ How many processes are running on my computer right now?

❖ In Linux, the ps utility gives a snapshot of currently-running processes
and pstree formats these as a tree

▪ Can run man ps and man pstree for more info

▪ Let’s see a simple pstree

▪ Let’s check attu for some 351 zombie processes

13

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Homework Setup

❖ In the MiniShell slide of HW24, you will be implementing a small
command-line interface (like bash)

▪ Should execute programs when passed the path of an executable and arguments,
using fork, execv, and wait

❖ Command-line arguments in C:
▪ int main (int argc, char* argv[]);

▪ argc is the arg count, argv is an array of pointers to the arg values (C-strings)

❖ Process functions:

▪ execv – 1st arg is path to executable (C-string), 2nd arg is argv

▪ wait – only arg is a pointer to where child’s status code will be placed
14

CSE351V00: IntroductionL24: Processes II, Virtual Memory I CSE351, Autumn 2023

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the current lab

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

15

