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Relevant Course Information

❖ HW24 due Friday (12/1), HW25 due next Wednesday

❖ Lab 4 due tonight, Lab 5 due Dec. 7

❖ No lessons in Week 11 – “normal” lectures

❖ Final Dec. 11-13

▪ Structure will be very similar to the midterm

▪ Not cumulative: focused on post-midterm material

▪ Final review section on 12/7

▪ Final review session planned for Zoom on 12/8

▪ Regrade requests Dec. 17
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Lesson Summary (1/4)

❖ The fork-exec model

▪ Every process is assigned a unique process ID (pid)

▪ Every process has a parent process except for init/system (pid 1)

▪ fork() returns 0 to child, child’s PID to parent

▪ exec() replaces the current process’ code and address space with the code for a 
different program
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Lesson Summary (2/4)

❖ Terminating a process

▪ Return from main() or explicit call to exit(status)

▪ Passes a status code (main’s return value or exit’s argument) to parent process
• 0 for normal exit, nonzero for abnormal exit

❖ Processes and resources

▪ A terminated (zombie) process still consumes system resources until reaped

▪ Child is reaped when parent process terminates or explicitly calls wait/waitpid

▪ Orphaned children reaped by init/systemd
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Lesson Summary (3/4)

❖ Concurrency and process diagrams

▪ Concurrently executing processes are scheduled non-deterministically by the 
operating system

▪ A process graph is a useful tool for capturing the partial ordering of statements in a 
concurrent program
• Vertices are program statements, directed edges capture sequencing within a process

• Flexible visualization tool:
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Lesson Summary (4/4)

❖ Virtual memory is software’s perspective (e.g., memory layout), 
physical memory is hardware’s perspective (e.g., memory hierarchy)

❖ Virtual memory manages the memory for multiple concurrently running 
processes (implements protection and sharing)

▪ Each process has its own virtual address space that gets mapped into parts of the 
physical address space

▪ When run out of physical address 
space, put least recently used data 
in disk
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Lesson Q&A

❖ Terminology:

▪ Processes:  fork-exec model, process ID, exec*(), exit(), wait(), waitpid()

▪ init/systemd, reaping, zombie processes

▪ Virtual memory: virtual addressing, physical addressing, indirection

❖ Learning Objectives:

▪ Design process graphs to determine potential orderings of concurrent execution.

▪ Write code that uses system calls to spawn, overlay, reap, and terminate processes 
on Linux x86-64.

▪ Explain the benefits behind why virtual memory is used instead of only physical 
memory address space.

❖ What lingering questions do you have from the lesson?
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Processes Practice Question

❖ Are the following sequences of outputs possible?
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void nestedfork() {

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

Seq 2:
L0

Bye

L1

L2

Bye

Bye

Seq 1:
L0

L1

Bye

Bye

Bye

L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…
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VM Practice Questions

❖ On a 64-bit machine currently running 8 processes, how much virtual 
memory is currently available?

❖ True or False:  A 32-bit machine with 8 GiB of RAM installed would never 
use all of it (in theory).
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Processes II, Virtual 
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Processes Demos

❖ How many processes are running on my computer right now?

❖ In Linux, the ps utility gives a snapshot of currently-running processes 
and pstree formats these as a tree

▪ Can run man ps and man pstree for more info

▪ Let’s see a simple pstree

▪ Let’s check attu for some 351 zombie processes
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Homework Setup

❖ In the MiniShell slide of HW24, you will be implementing a small 
command-line interface (like bash)

▪ Should execute programs when passed the path of an executable and arguments, 
using fork, execv, and wait

❖ Command-line arguments in C:
▪ int main (int argc, char* argv[]);

▪ argc is the arg count, argv is an array of pointers to the arg values (C-strings)

❖ Process functions:

▪ execv – 1st arg is path to executable (C-string), 2nd arg is argv

▪ wait – only arg is a pointer to where child’s status code will be placed
14
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Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the current lab

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support
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