
CSE 351, Spring 2024L05:  Integers II

Integers II
CSE 351 Spring 2024

Instructor: 
Elba Garza

Teaching Assistants:
Ellis Haker  Maggie Jiang
Adithi Raghavan  Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page  Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong  Stephen Ying
Claire Wang  Will Robertson
Hamsa Shankar



CSE 351, Spring 2024L05:  Integers II

Announcements, Reminders
v HW3 due tonight, HW4 due Friday (05 Apr)
v Lab 1a due Monday (8 Apr)

§ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux 
environment)

§ Submit pointer.c and lab1Asynthesis.txt to Gradescope
• Make sure you pass the File and Compilation Check – all the correct files were found and there 

were no compilation or runtime errors

v Lab 1b releases tomorrow, due next Monday (15 Apr)
§ Bit manipulation on a custom encoding scheme
§ Bonus slides at the end of today’s lecture have examples for you to look at 😉 

2



CSE 351, Spring 2024L05:  Integers II

Reading Review

v Terminology:
§ UMin, UMax, TMin, TMax
§ Type casting:  implicit vs. explicit
§ Integer extension:  zero extension vs. sign extension
§ Modular arithmetic and arithmetic overflow
§ Bit shifting:  left shift, logical right shift, arithmetic right shift

3



CSE 351, Spring 2024L05:  Integers II

Review Questions

v What is the value and encoding of Tmin (minimum signed value) 
for a fictional 7-bit wide integer data type?

v For unsigned char uc = 0xB3;, what are the produced data for the 
cast (unsigned short)uc?

v What is the result of the following expressions?
§ (signed char)uc >> 2
§ (unsigned char)uc >> 3

4



CSE 351, Spring 2024L05:  Integers II

Why Does Two’s Complement Work?

v For all representable positive integers 𝑥, we theoretically want:

  We want the additive inverse!
§ What are the 8-bit negative encodings for the following?

5

bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001
+ ????????
00000000

00000010
+ ????????
00000000

11000011
+ ????????
00000000



CSE 351, Spring 2024L05:  Integers II

Why Does Two’s Complement Work?

v For all representable positive integers 𝑥, we theoretically want:

§ What are the 8-bit negative encodings for the following?

6

bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001
+ 11111111
100000000

00000010
+ 11111110
100000000

11000011
+ 00111101
100000000

These are the bitwise complement plus 1!
-x == ~x + 1



CSE 351, Spring 2024L05:  Integers II

Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations

7



CSE 351, Spring 2024L05:  Integers II

Values To Remember (Review)
v Unsigned Values

§ UMin = 0b00…0
 = 0

§ UMax = 0b11…1
 = 2! − 1

v Example:  Values for 𝑤 = 64

8

v Two’s Complement Values
§ TMin = 0b10…0

 = −2!"#

§ TMax = 0b01…1
 = 2!"# − 1

§ −1 = 0b11…1

Decimal Hex

UMax 18,446,744,073,709,551,615 FF FF FF FF  FF FF FF FF

TMax 9,223,372,036,854,775,807 7F FF FF FF  FF FF FF FF

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00

-1 -1 FF FF FF FF  FF FF FF FF

0 0 00 00 00 00  00 00 00 00



CSE 351, Spring 2024L05:  Integers II

UMax – 1

0

TMax

TMin

–1
–2

0/UMin

UMax

TMax
TMax  + 1

2’s Complement 
Range

Unsigned
Range

Signed/Unsigned Conversion Visualized
v Two’s Complement → Unsigned

§ Ordering Inversion
§ Negative → Big Positive

9

1111

0111

0000

1000

4-bit 
Example: 



CSE 351, Spring 2024L05:  Integers II

In C: Signed vs. Unsigned (Review)

v Casting
§ Bits are unchanged, just interpreted differently! 

• int  tx, ty;
• unsigned int  ux, uy;

§ Explicit casting:
• tx = (int) ux;
• uy = (unsigned int) ty;

§ Implicit casting can occur during assignments or function calls:
• tx = ux;
• uy = ty;

10



CSE 351, Spring 2024L05:  Integers II

Casting Surprises (Review)

v Integer literals (constants)
§ By default, integer constants are considered signed integers

• Hex constants already have an explicit binary representation

§ Use “U” (or “u”) suffix to explicitly force unsigned
• Examples:  0U, 4294967259u

v Expression Evaluation
§ When you mixed unsigned and signed in a single expression, then signed values 

are implicitly cast to unsigned
§ Including comparison operators <, >, ==, <=, >=
§ Yeah, no idea why. Thanks, C.  

11

⚠



CSE 351, Spring 2024L05:  Integers II

Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations

12



CSE 351, Spring 2024L05:  Integers II

Sign Extension (Review)

v Task:  Given a 𝑤-bit signed integer X, convert it to 𝑤+𝑘-bit signed integer 
X′ with the same value

v Rule:  Add 𝑘 copies of sign bit
§ Let 𝑥! be the 𝑖-th digit of X in binary
§ X" = 𝑥#$%, … , 𝑥#$%, 𝑥#$%, 𝑥#$&, … , 𝑥%, 𝑥'

13

𝑘 copies of MSB • • •X 

Xʹ • • • • • •

• • •

𝑤

𝑘 𝑤

original X

Ex:                     
  0b1000   =   -810



CSE 351, Spring 2024L05:  Integers II

Two’s Complement Arithmetic

v The same addiWon procedure works for both unsigned and 
two’s complement integers
§ Simplifies hardware: only one algorithm for addiWon 😇
§ Algorithm: simple addiWon, discard the highest carry bit

• Called modular addiXon:  result is sum, then modulo by 2!

14



CSE 351, Spring 2024L05:  Integers II

Arithmetic Overflow (Review)
v What happens a calculation produces a 

result that can’t be represented in the 
current encoding scheme?
§ Integer range limited by fixed width
§ Can occur in both the positive and negative 

directions

v Well… C and Java ignore overflow exceptions
§ You end up with a bad value in your program and 

get no warning/indication… oops!

15

Bits Unsigned Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1



CSE 351, Spring 2024L05:  Integers II

Overflow: Unsigned

v AddiBon: drop carry bit (wrong by −2()

v SubtracBon: borrow (wrong by +2()

16

15
+ 2
17
1

1111
+ 0010
10001

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

Unsigned

1
- 2
-1
15

10001
- 0010
1111

Over/Under by ±2( because of
modular arithmetic



CSE 351, Spring 2024L05:  Integers II

Overflow: Two’s Complement

v Addition: (+) + (+) = (−) result?

v Subtraction: (−) + (−) = (+)?

17

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

For signed: overflow happened if operands 
have same sign and result’s sign is different

Two’s 
Complement

6
+ 3
9
-7

0110
+ 0011
1001

-7
- 3
-10
6

1001
- 0011
0110



CSE 351, Spring 2024L05:  Integers II

Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations

18



CSE 351, Spring 2024L05:  Integers II

Shift Operations (Review)

Always: Throw away (drop) extra bits that “fall off” either end
v Left shift (x<<n) bit vector x by n positions

§ Fill with 0’s on right

v Right shift (x>>n) bit-vector x by n positions
§ For unsigned values: Logical shift—Fill with 0’s on left
§ For signed values: Arithmetic shift—Replicate most significant bit on left. 

Maintains sign of x! Exactly like we did with sign extension!

19

x 0010 0010
x<<3 0001 0000

logical: x>>2 0000 1000
arithmetic: x>>2 0000 1000

x 1010 0010
x<<3 0001 0000

logical: x>>2 0010 1000
arithmetic: x>>2 1110 1000

Ex: 0x22 Ex: 0xA2



CSE 351, Spring 2024L05:  Integers II

Shift Operations (Review)

v Arithmetic:
§ Left shift (x<<n) is equivalent to multiply by 2n

§ Right shift (x>>n) is equivalent to divide by 2n

§ Compiler Hack: Shifting is faster than general multiply and divide operations!

v Notes:
§ Shifts by n<0 or n≥w (w is bit width of x) are undefined
§ In C:  behavior of >> is determined by the compiler

• In gcc / clang, depends on data type of x (signed/unsigned)

§ In Java:  logical shift is >>> and arithmetic shift is >>

20



CSE 351, Spring 2024L05:  Integers II

Left Shifting 8-bit Example

v No difference in left shift operation for unsigned and signed numbers 
(just manipulates bits)
§ Difference comes during interpretation: x*2n?

21

x = 25;      00011001 =

L1=x<<2;   0001100100 =

L2=x<<3;  00011001000 =

L3=x<<4; 000110010000 = 

25    25   25

100   100  100

-56   200  200

-112  144  400 

Signed   Unsigned   No Overflow

signed overflow

unsigned overflow

signed overflow



CSE 351, Spring 2024L05:  Integers II

Right Shifting 8-bit Examples

v Reminder:  C operator >> does logical shift on unsigned values and 
arithmetic shift on signed values
§ Logical Shift:  x/2n?

22

xu = 240u; 11110000      =

R1u=xu>>3; 00011110000  =

R2u=xu>>5; 0000011110000 =

240   240

 30    30

  7        7.5?

rounding (down)

Unsigned        No Rounding



CSE 351, Spring 2024L05:  Integers II

Right Shifting 8-bit Examples

v Reminder:  C operator >> does logical shift on unsigned values and 
arithmetic shift on signed values
§ Arithmetic Shift:  x/2n?

23

xs = -16;  11110000      =

R1s=xs>>3; 11111110000  =

R2s=xs>>5; 1111111110000 =

-16    -16

 -2     -2

 -1     -0.5

rounding (down)

Signed        No Rounding



CSE 351, Spring 2024L05:  Integers II

Summary

v Sign and unsigned variables in C
§ Bit pattern remains the same, just interpreted differently
§ Strange things can happen with our arithmetic when we convert/cast between sign 

and unsigned numbers
• Type of variables affects behavior of operators (shifting, comparison)

v We can only represent so many numbers in 𝑤 bits
§ When we exceed the limits, arithmetic overflow occurs
§ Sign extension tries to preserve value when expanding

v Shifting is a useful bitwise operator
§ Right shifting can be arithmetic (sign) or logical (0)
§ Can be used in multiplication with constant or bit masking

24



CSE 351, Spring 2024L05:  Integers II

Undefined Behavior in C

v How much undefined behavior have we talked about in just 
the past few lectures?
§ Shifting by more than size of type
§ No bounds checking in arrays
§ Pointer nonsense
§ Mystery data in unassigned

variables
§ …and there will be more! 🥴

25

What does this tell us about the values 
that were embedded in C?



CSE 351, Spring 2024L05:  Integers II

C language (1978)

v Developed beginning in 1971, “standardized” in 1978
§ Goal of writing Unix (precursor to Linux, macOS and others)
§ Different time— faced with significant performance and resource limits

v Explicit Goals: 
§ Portability, performance (better than B, it’s C!)

26



CSE 351, Spring 2024L05:  Integers II

Your Perspectives on C

v What have you noticed about the way that C works?
§ What does it make easy?

§ What does it make difficult?

27



CSE 351, Spring 2024L05:  Integers II

Perspectives on C

v Minimalist
§ Relatively small, can be described in a small space, and learned quickly (or so it’s 

claimed)
§ “Only the bare essentials”

v Rugged
§ Close to the hardware
§ Shows what’s really happening

v Eliteness
§ “Real programmers can do pointer arithmetic!”
§ Quickly slides into a “Back in my day!” situation… 

28



CSE 351, Spring 2024L05:  Integers II

Consequences of C

v “C is good for two things: being beautiful 
and creating catastrophic 0days in 
memory management.” - Link to Medium Post

v “We shape our tools, and thereafter, our 
tools shape us.”   – John Culkin, 1967

v White House says no to C/C++! Is Joe 
Biden a rustacean? 

32

Also applies to C, of course. 

https://medium.com/message/everything-is-broken-81e5f33a24e1
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/


CSE 351, Spring 2024L05:  Integers II

Maybe C is like… cilantro?

v Maybe you love it!
v Maybe you hate it!
v Maybe your feelings are 

more complicated than 
that!

v We’re not trying to force you one way or another, we only ask that you 
try to appreciate both its benefits and its shortcomings.

v Mainly using C as a tool to understand computers.

33



CSE 351, Spring 2024L05:  Integers II

Some examples of using shift operators in combination 
with bitmasks, which you may find helpful for Lab 1b.

v Extract the 2nd most significant byte of an int
v Extract the sign bit of a signed int
v Conditionals as Boolean expressions

34



CSE 351, Spring 2024L05:  Integers II

Practice Question 1

v Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the 
following expression evaluate to?
§ UMin = 0, UMax = 255, TMin = -128, TMax = 127

v 127 < (signed char) 128u

35



CSE 351, Spring 2024L05:  Integers II

Practice Questions 2

v Assuming 8-bit integers:
§ 0x27 = 39 (signed) = 39 (unsigned)
§ 0xD9 = -39 (signed) = 217 (unsigned)
§ 0x7F = 127 (signed) = 127 (unsigned)
§ 0x81 = -127 (signed) = 129 (unsigned)

v For the following additions, did signed and/or unsigned overflow occur?
§ 0x27 + 0x81

§ 0x7F + 0xD9

36



CSE 351, Spring 2024L05:  Integers II

Exploration Questions

v Assume we are using 8-bit arithmetic:

§ x == (unsigned char) x

§ x >= 128U

§ x != (x>>2)<<2

§ x == -x 
• Hint:  there are two solutions

§ (x < 128U) && (x > 0x3F)

37

For the following expressions, find a value of signed char x, 
if there exists one, that makes the expression True.



CSE 351, Spring 2024L05:  Integers II

Using Shifts and Masks

v Extract the 2nd most significant byte of an int:
§ First shift, then mask:  (x>>16) & 0xFF

§ Or first mask, then shift: (x & 0xFF0000)>>16

38

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100



CSE 351, Spring 2024L05:  Integers II

Using Shifts and Masks

v Extract the sign bit of a signed int:
§ First shift, then mask:  (x>>31) & 0x1

• Assuming arithmetic shift here, but this works in either case
• Need mask to clear 1s possibly shifted in

39

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0
0

1
1



CSE 351, Spring 2024L05:  Integers II

Using Shifts and Masks

v Conditionals as Boolean expressions
§ For int x, what does (x<<31)>>31 do?

§ Can use in place of conditional:
• In C:  if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;
• a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

40

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000


