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Announcements, Reminders
v HW3 due tonight, HW4 due Friday (05 Apr)
v Lab 1a due Monday (8 Apr)

§ Use ptest and dlc.py to check your solution for correctness (on the CSE Linux 
environment)

§ Submit pointer.c and lab1Asynthesis.txt to Gradescope
• Make sure you pass the File and Compilation Check – all the correct files were found and there 

were no compilation or runtime errors

v Lab 1b releases tomorrow, due next Monday (15 Apr)
§ Bit manipulation on a custom encoding scheme
§ Bonus slides at the end of today’s lecture have examples for you to look at 😉 
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Reading Review

v Terminology:
§ UMin, UMax, TMin, TMax
§ Type casting:  implicit vs. explicit
§ Integer extension:  zero extension vs. sign extension
§ Modular arithmetic and arithmetic overflow
§ Bit shifting:  left shift, logical right shift, arithmetic right shift
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Review Questions

v What is the value and encoding of Tmin (minimum signed value) 
for a fictional 7-bit wide integer data type?

v For unsigned char uc = 0xB3;, what are the produced data for the 
cast (unsigned short)uc?

v What is the result of the following expressions?
§ (signed char)uc >> 2
§ (unsigned char)uc >> 3
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Why Does Two’s Complement Work?

v For all representable positive integers 𝑥, we theoretically want:

  We want the additive inverse!
§ What are the 8-bit negative encodings for the following?
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bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001
+ ????????
00000000

00000010
+ ????????
00000000

11000011
+ ????????
00000000
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Why Does Two’s Complement Work?

v For all representable positive integers 𝑥, we theoretically want:

§ What are the 8-bit negative encodings for the following?
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bit representation of –𝑥
+ bit representation of –𝑥

0 (ignoring the carry-out bit)

00000001
+ 11111111
100000000

00000010
+ 11111110
100000000

11000011
+ 00111101
100000000

These are the bitwise complement plus 1!
-x == ~x + 1
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Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations
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Values To Remember (Review)
v Unsigned Values

§ UMin = 0b00…0
 = 0

§ UMax = 0b11…1
 = 2! − 1

v Example:  Values for 𝑤 = 64
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v Two’s Complement Values
§ TMin = 0b10…0

 = −2!"#

§ TMax = 0b01…1
 = 2!"# − 1

§ −1 = 0b11…1

Decimal Hex

UMax 18,446,744,073,709,551,615 FF FF FF FF  FF FF FF FF

TMax 9,223,372,036,854,775,807 7F FF FF FF  FF FF FF FF

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00

-1 -1 FF FF FF FF  FF FF FF FF

0 0 00 00 00 00  00 00 00 00
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UMax – 1

0

TMax

TMin

–1
–2

0/UMin

UMax

TMax
TMax  + 1

2’s Complement 
Range

Unsigned
Range

Signed/Unsigned Conversion Visualized
v Two’s Complement → Unsigned

§ Ordering Inversion
§ Negative → Big Positive
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1111

0111

0000

1000

4-bit 
Example: 
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In C: Signed vs. Unsigned (Review)

v Casting
§ Bits are unchanged, just interpreted differently! 

• int  tx, ty;
• unsigned int  ux, uy;

§ Explicit casting:
• tx = (int) ux;
• uy = (unsigned int) ty;

§ Implicit casting can occur during assignments or function calls:
• tx = ux;
• uy = ty;
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Casting Surprises (Review)

v Integer literals (constants)
§ By default, integer constants are considered signed integers

• Hex constants already have an explicit binary representation

§ Use “U” (or “u”) suffix to explicitly force unsigned
• Examples:  0U, 4294967259u

v Expression Evaluation
§ When you mixed unsigned and signed in a single expression, then signed values 

are implicitly cast to unsigned
§ Including comparison operators <, >, ==, <=, >=
§ Yeah, no idea why. Thanks, C.  
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⚠
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Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations
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Sign Extension (Review)

v Task:  Given a 𝑤-bit signed integer X, convert it to 𝑤+𝑘-bit signed integer 
X′ with the same value

v Rule:  Add 𝑘 copies of sign bit
§ Let 𝑥! be the 𝑖-th digit of X in binary
§ X" = 𝑥#$%, … , 𝑥#$%, 𝑥#$%, 𝑥#$&, … , 𝑥%, 𝑥'
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𝑘 copies of MSB • • •X 

Xʹ • • • • • •

• • •

𝑤

𝑘 𝑤

original X

Ex:                     
  0b1000   =   -810
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Two’s Complement Arithmetic

v The same addiWon procedure works for both unsigned and 
two’s complement integers
§ Simplifies hardware: only one algorithm for addiWon 😇
§ Algorithm: simple addiWon, discard the highest carry bit

• Called modular addiXon:  result is sum, then modulo by 2!
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Arithmetic Overflow (Review)
v What happens a calculation produces a 

result that can’t be represented in the 
current encoding scheme?
§ Integer range limited by fixed width
§ Can occur in both the positive and negative 

directions

v Well… C and Java ignore overflow exceptions
§ You end up with a bad value in your program and 

get no warning/indication… oops!
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Bits Unsigned Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1
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Overflow: Unsigned

v AddiBon: drop carry bit (wrong by −2()

v SubtracBon: borrow (wrong by +2()

16

15
+ 2
17
1

1111
+ 0010
10001

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
1

2

3

4

5

6
78

9

10

11

12

13

14
15

Unsigned

1
- 2
-1
15

10001
- 0010
1111

Over/Under by ±2( because of
modular arithmetic



CSE 351, Spring 2024L05:  Integers II

Overflow: Two’s Complement

v Addition: (+) + (+) = (−) result?

v Subtraction: (−) + (−) = (+)?
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0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

For signed: overflow happened if operands 
have same sign and result’s sign is different

Two’s 
Complement

6
+ 3
9
-7

0110
+ 0011
1001

-7
- 3
-10
6

1001
- 0011
0110
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Integers

v Binary representation of integers
§ Unsigned and signed
§ Casting in C

v Consequences of finite width representations
§ Sign extension, overflow

v Shifting and arithmetic operations
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Shift Operations (Review)

Always: Throw away (drop) extra bits that “fall off” either end
v Left shift (x<<n) bit vector x by n positions

§ Fill with 0’s on right

v Right shift (x>>n) bit-vector x by n positions
§ For unsigned values: Logical shift—Fill with 0’s on left
§ For signed values: Arithmetic shift—Replicate most significant bit on left. 

Maintains sign of x! Exactly like we did with sign extension!
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x 0010 0010
x<<3 0001 0000

logical: x>>2 0000 1000
arithmetic: x>>2 0000 1000

x 1010 0010
x<<3 0001 0000

logical: x>>2 0010 1000
arithmetic: x>>2 1110 1000

Ex: 0x22 Ex: 0xA2
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Shift Operations (Review)

v Arithmetic:
§ Left shift (x<<n) is equivalent to multiply by 2n

§ Right shift (x>>n) is equivalent to divide by 2n

§ Compiler Hack: Shifting is faster than general multiply and divide operations!

v Notes:
§ Shifts by n<0 or n≥w (w is bit width of x) are undefined
§ In C:  behavior of >> is determined by the compiler

• In gcc / clang, depends on data type of x (signed/unsigned)

§ In Java:  logical shift is >>> and arithmetic shift is >>
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Left Shifting 8-bit Example

v No difference in left shift operation for unsigned and signed numbers 
(just manipulates bits)
§ Difference comes during interpretation: x*2n?
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x = 25;      00011001 =

L1=x<<2;   0001100100 =

L2=x<<3;  00011001000 =

L3=x<<4; 000110010000 = 

25    25   25

100   100  100

-56   200  200

-112  144  400 

Signed   Unsigned   No Overflow

signed overflow

unsigned overflow

signed overflow
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Right Shifting 8-bit Examples

v Reminder:  C operator >> does logical shift on unsigned values and 
arithmetic shift on signed values
§ Logical Shift:  x/2n?
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xu = 240u; 11110000      =

R1u=xu>>3; 00011110000  =

R2u=xu>>5; 0000011110000 =

240   240

 30    30

  7        7.5?

rounding (down)

Unsigned        No Rounding
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Right Shifting 8-bit Examples

v Reminder:  C operator >> does logical shift on unsigned values and 
arithmetic shift on signed values
§ Arithmetic Shift:  x/2n?
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xs = -16;  11110000      =

R1s=xs>>3; 11111110000  =

R2s=xs>>5; 1111111110000 =

-16    -16

 -2     -2

 -1     -0.5

rounding (down)

Signed        No Rounding
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Summary

v Sign and unsigned variables in C
§ Bit pattern remains the same, just interpreted differently
§ Strange things can happen with our arithmetic when we convert/cast between sign 

and unsigned numbers
• Type of variables affects behavior of operators (shifting, comparison)

v We can only represent so many numbers in 𝑤 bits
§ When we exceed the limits, arithmetic overflow occurs
§ Sign extension tries to preserve value when expanding

v Shifting is a useful bitwise operator
§ Right shifting can be arithmetic (sign) or logical (0)
§ Can be used in multiplication with constant or bit masking
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Undefined Behavior in C

v How much undefined behavior have we talked about in just 
the past few lectures?
§ Shifting by more than size of type
§ No bounds checking in arrays
§ Pointer nonsense
§ Mystery data in unassigned

variables
§ …and there will be more! 🥴
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What does this tell us about the values 
that were embedded in C?
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C language (1978)

v Developed beginning in 1971, “standardized” in 1978
§ Goal of writing Unix (precursor to Linux, macOS and others)
§ Different time— faced with significant performance and resource limits

v Explicit Goals: 
§ Portability, performance (better than B, it’s C!)
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Your Perspectives on C

v What have you noticed about the way that C works?
§ What does it make easy?

§ What does it make difficult?
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Perspectives on C

v Minimalist
§ Relatively small, can be described in a small space, and learned quickly (or so it’s 

claimed)
§ “Only the bare essentials”

v Rugged
§ Close to the hardware
§ Shows what’s really happening

v Eliteness
§ “Real programmers can do pointer arithmetic!”
§ Quickly slides into a “Back in my day!” situation… 
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Consequences of C

v “C is good for two things: being beautiful 
and creating catastrophic 0days in 
memory management.” - Link to Medium Post

v “We shape our tools, and thereafter, our 
tools shape us.”   – John Culkin, 1967

v White House says no to C/C++! Is Joe 
Biden a rustacean? 

32

Also applies to C, of course. 

https://medium.com/message/everything-is-broken-81e5f33a24e1
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/
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Maybe C is like… cilantro?

v Maybe you love it!
v Maybe you hate it!
v Maybe your feelings are 

more complicated than 
that!

v We’re not trying to force you one way or another, we only ask that you 
try to appreciate both its benefits and its shortcomings.

v Mainly using C as a tool to understand computers.
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Some examples of using shift operators in combination 
with bitmasks, which you may find helpful for Lab 1b.

v Extract the 2nd most significant byte of an int
v Extract the sign bit of a signed int
v Conditionals as Boolean expressions
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Practice Question 1

v Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the 
following expression evaluate to?
§ UMin = 0, UMax = 255, TMin = -128, TMax = 127

v 127 < (signed char) 128u
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Practice Questions 2

v Assuming 8-bit integers:
§ 0x27 = 39 (signed) = 39 (unsigned)
§ 0xD9 = -39 (signed) = 217 (unsigned)
§ 0x7F = 127 (signed) = 127 (unsigned)
§ 0x81 = -127 (signed) = 129 (unsigned)

v For the following additions, did signed and/or unsigned overflow occur?
§ 0x27 + 0x81

§ 0x7F + 0xD9
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Exploration Questions

v Assume we are using 8-bit arithmetic:

§ x == (unsigned char) x

§ x >= 128U

§ x != (x>>2)<<2

§ x == -x 
• Hint:  there are two solutions

§ (x < 128U) && (x > 0x3F)

37

For the following expressions, find a value of signed char x, 
if there exists one, that makes the expression True.
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Using Shifts and Masks

v Extract the 2nd most significant byte of an int:
§ First shift, then mask:  (x>>16) & 0xFF

§ Or first mask, then shift: (x & 0xFF0000)>>16
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0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100
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Using Shifts and Masks

v Extract the sign bit of a signed int:
§ First shift, then mask:  (x>>31) & 0x1

• Assuming arithmetic shift here, but this works in either case
• Need mask to clear 1s possibly shifted in

39

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0
0

1
1
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Using Shifts and Masks

v Conditionals as Boolean expressions
§ For int x, what does (x<<31)>>31 do?

§ Can use in place of conditional:
• In C:  if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;
• a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);
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x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000


