## Integers II

CSE 351 Spring 2024

## Instructor:

## Elba Garza

## Teaching Assistants:

Ellis Haker
Adithi Raghavan
Aman Mohammed
Brenden Page
Celestine Buendia
Chloe Fong
Claire Wang
Hamsa Shankar

Maggie Jiang
Malak Zaki
Naama Amiel
Nikolas McNamee
Shananda Dokka
Stephen Ying
Will Robertson


## Announcements, Reminders

* HW3 due tonight, HW4 due Friday (05 Apr)
* Lab 1a due Monday (8 Apr)
- Use ptest and dlc. py to check your solution for correctness (on the CSE Linux environment)
- Submit pointer.c and lab1Asynthesis.txt to Gradescope
- Make sure you pass the File and Compilation Check - all the correct files were found and there were no compilation or runtime errors
* Lab 1b releases tomorrow, due next Monday (15 Apr)
- Bit manipulation on a custom encoding scheme
- Bonus slides at the end of today's lecture have examples for you to look at $;$;)


## Reading Review

* Terminology:
- UMin, UMax, TMin, TMax
- Type casting: implicit vs. explicit
- Integer extension: zero extension vs. sign extension
- Modular arithmetic and arithmetic overflow
- Bit shifting: left shift, logical right shift, arithmetic right shift

Review Questions

* What is the value and encoding of Tin (minimum signed value) for a fictional 7-bit wide integer data type?

$$
-\frac{1}{-64} \frac{0}{2^{4}} \frac{0}{2^{4}} \frac{0}{2^{2}} \frac{0}{2^{\prime}} \frac{0}{2^{0}}
$$

: For unsigned char ac $=0 \times B 3$; , what are the produced data for the cast (unsigned short)uc?

$$
\mathrm{O} \times \mathrm{B3} \rightarrow \mathrm{O} \times \mathrm{OOB3}
$$

$$
\text { two bytes } \rightarrow \text { short! }
$$

* What is the result of the following expressions?

$$
\text { one byte } \rightarrow \text { char! }
$$

- (signed char)uc >> 2
- (unsigned char)uc >>

$$
\begin{aligned}
& 3 \text { extend } \mathrm{sigh}^{\prime \prime} 1011 \text { OOh } \longrightarrow 0611101100 \\
& 0 \times E C
\end{aligned}
$$

## Why Does Two’s Complement Work?

* For all representable positive integers $x$, we theoretically want:
bit representation of $x$
+ bit representation of $-x$ (ignoring the carry-out bit)
We want the additive inverse!
- What are the 8 -bit negative encodings for the following?

$$
\begin{array}{r}
00000001 \leftarrow \\
+\quad \text { ???????? } \\
\hline 00000000
\end{array}
$$



## Why Does Two’s Complement Work?

* For all representable positive integers $x$, we theoretically want:
bit representation of $x$
+ bit representation of $-x$ (ignoring the carry-out bit)
- What are the 8-bit negative encodings for the following?

$$
\begin{array}{rrr}
00000001 \\
+\quad 11111111 \\
\hline 100000000 & 00000010 \\
\hline+\quad 11111110 \\
\hline 100000000
\end{array} \quad \begin{array}{r}
11000011 \\
+\quad 00111101 \\
\hline 100000000
\end{array}
$$

work! Plus, the limited number
These are the bitwise complement plus 1!

$$
-x=\sim \sim x+1
$$

## Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations


## Values To Remember (Review)

* Unsigned Values
- UMin = 0b00... 0
- $\begin{aligned} \text { UMax } & =0 \mathrm{~b} 11 \ldots 1 \\ & =\frac{2^{w}-1}{}\end{aligned}$
* Two's Complement Values

$$
\begin{aligned}
\text { - TMin } & =0 . \mathrm{b} 10 \ldots 0 \\
& =-2^{w-1} \\
\text { - TMax } & =0 . \mathrm{b01} \mathrm{\ldots .} \\
& =2^{w-1}-1 \\
\text { - }-1 & =0 . \mathrm{b} 11 \ldots 1
\end{aligned}
$$

* Example: Values for $w=64$



## Signed/Unsigned Conversion Visualized

* Two's Complement $\rightarrow$ Unsigned
- Ordering Inversion
- Negative $\rightarrow$ Big Positive

$$
\begin{aligned}
& \text { 4-bit } \\
& \text { Example: }
\end{aligned}
$$





In C: Signed vs. Unsigned (Review)

* Casting It's all about
- Bits are unchanged, just interpreted differently! interpreting encoding!
- int tx, ty; // signed by default
- unsigned int ut, wy;
- Explicit casting: (preferred over implicit casting...)
- tx = (int) ix;
- wy = (unsigned int) ty;
- Implicit casting can occur during assignments or function calls:
- tx = tx;

Another example:

- wy = ty;

Signed char $s c=-1$;
unsigned char $u c=s c ; / / v e$ is equal to
255,0 now! !1

## Casting Surprises (Review)

* Integer literals (constants)
- By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation
- Use "U" (or "u") suffix to explicitly force unsigned
- Examples: OU, 4294967259u
* Expression Evaluation

- When you mixed unsigned and signed in a single expression, then signed values are implicitly cast to unsigned i.e. Unsigned has precedence!
- Including comparison operators $<,>,==,<=,>=$
- Yeah, no idea why. Thanks, C.


## Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations


## Sign Extension (Review)

* Task: Given a $w$-bit signed integer X , convert it to $w+k$-bit signed integer $\mathrm{X}^{\prime}$ with the same value
* Rule: Add $k$ copies of sign bit (ensures sign is maintained.)
- Let $x_{i}$ be the $i$-th digit of X in binary
- $\mathrm{X}^{\prime}=\underbrace{x_{w-1}, \ldots, x_{w-1}}_{k \text { copies of MSB }}, \underbrace{x_{w-1}, x_{w-2}, \ldots, x_{1}, x_{0}}_{\text {original } \mathrm{X}}$


## Ex:

$$
\text { Ob1000 }=-8_{10}
$$

Male its bit: Ob 1 $1000=-8$


Valve does not change.

## Two's Complement Arithmetic

* The same addition procedure works for both unsigned and two's complement integers
- Simplifies hardware: only one algorithm for addition
- Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum, then modulo by $2^{w}$



## Arithmetic Overflow (Review)

| Bits | Unsigned | Signed |
| :---: | :---: | :---: |
| 0000 | $0 U_{\text {min }}$ | 0 |
| 0001 | 1 | 1 |
| 0010 | 2 | 2 |
| 0011 | 3 | 3 |
| 0100 | 4 | 4 |
| 0101 | 5 | 5 |
| 0110 | 6 | 6 |
| 0111 | 7 | 7 |
| 1000 | 8 | -8 |
| 1001 | 9 | -7 |
| 1010 | 10 | -6 |
| 1011 | 11 | -5 |
| 1100 | 12 | -4 |
| 1101 | 13 | -3 |
| 1110 | 14 | -2 |
| 1111 | 15 | TMAR |

* What happens a calculation produces a result that can't be represented in the current encoding scheme?
- Integer range limited by fixed width
- Can occur in both the positive and negative directions

Well... C and Java ignore overflow exceptions

- You end up with a bad value in your program and get no warning/indication... oops!

If we add 1 to
this, is it overflous? Well, ges but it takes us to 0.

Good overflow!"


## Overflow: Unsigned

* Addition: drop carry bit (wrong by $-2^{\mathrm{N}}$ )

* Subtraction: borrow (wrong by $+2^{\mathrm{N}}$ )

$$
\begin{array}{r}
1 \\
-\quad 2 \\
\hline-10001 \\
\hline 1111
\end{array}
$$

Actually: ${ }^{15}$


> Over/ Under by $\pm 2^{\mathrm{N}}$ because of modular arithmetic

## Overflow: Two's Complement

* Addition: $(+)+(+)=(-)$ result?

$$
\begin{array}{rr}
6 \\
+3 \\
\hline 8 & +00110 \\
\hline 1001
\end{array}
$$

* Subtraction: $(-)+(-)=(+)$ ?

$$
\begin{array}{r}
-7 \\
-\quad 3 \\
\hline-10
\end{array} \quad \begin{array}{r}
1001 \\
-\quad 0011 \\
\hline \underline{0} 110
\end{array}
$$



For signed: overflow happened if operands have same sign and result's sign is different

## Integers

* Binary representation of integers
- Unsigned and signed
- Casting in C
* Consequences of finite width representations
- Sign extension, overflow
* Shifting and arithmetic operations

$$
\begin{aligned}
& \text { Last time: Bit mos. } \\
& \text { Now, looking back, we fold have } \\
& \text { isolated the suit bits via bit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We could have logically shifted instead: } \\
& \frac{1010101010101101}{\sqrt[3]{\text { suit }}}
\end{aligned}
$$

## Shift Operations (Review)

Always: Throw away (drop) extra bits that "fall off" either end

* Left shift ( $\mathrm{x} \ll \mathrm{n}$ ) bit vector x by n positions
- Fill with 0's on right
* Right shift ( $x \gg n$ ) bit-vector $x$ by $n$ positions
- For unsigned values: Logical shift—Fill with 0's on left
- For signed values: Arithmetic shift—Replicate most significant bit on left. Maintains sign of x! Exactly like we did with sign extension!

| $8-b i t$ | Ex: 0x22 |  |  | Ex: 0xA2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | 00100010 | eft, alua | X | 1010 | 0010 |
| Examples: | $x \ll 3$ | 00010000 | 03 | $x \ll 3$ | 0001 | 0000 |
| logical: | $x \gg 2$ | 00001000 | logical: | $x \gg 2$ | 0010 | 1000 |
| arithmetic: | $x \gg 2$ | 00001000 | arithmetic: | $x \gg 2$ | 1110 | 1000 |

## Shift Operations (Review)

* Arithmetic:
- Left shift $(x \ll n)$ is equivalent to multiply by $2^{n}$
- Right shift $(x \gg n)$ is equivalent to divide by $2^{n}$
- Compiler Hack: Shifting is faster than general multiply and divide operations!
* Notes:
- Shifts by $n<0$ or $n \geq w$ ( $w$ is bit width of $x$ ) are undefined
- In C: behavior of >> is determined by the compiler - In gcc / clang, depends on data type of $x$ (signed/unsigned)

- In Java: logical shift is >>> and arithmetic shift is >>


## Left Shifting 8-bit Example

* No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
- Difference comes during interpretation: $\mathrm{x} * 2^{\text {n }}$ ?
(In a perfect woold)

$$
\begin{aligned}
& x=25 ; \\
& \text { L1 }=x \ll 2 \text {; } \\
& \text { L2 } 2=x \ll 3 ; \\
& 00 \left\lvert\, \begin{array}{ccc}
\text { Signed } \\
25 & \begin{array}{c}
\text { Unsigned } \\
25
\end{array} & \begin{array}{c}
\text { No Over } \\
25
\end{array} \\
00011001= & 100 & 100
\end{array} 100\right.
\end{aligned}
$$

## Right Shifting 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values
- Logical Shift: x/2n?

$$
\begin{array}{ll}
\mathrm{xu}=240 u ; & 11110000 \\
\mathrm{R} 1 \mathrm{u}=\mathrm{xu} \gg 3 ; & 00011110 \mid 000 \\
\mathrm{R} 2 \mathrm{u}=\mathrm{xu} \gg 5 ; & 00000111 \mid 0000= \\
\hline & \begin{array}{cc}
\text { Unsigned } & \text { No Rounding } \\
240 & 240
\end{array} \\
& 30
\end{array}
$$

## Right Shifting 8-bit Examples

* Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values
- Arithmetic Shift: x/2n?



## Summary

* Sign and unsigned variables in C
- Bit pattern remains the same, just interpreted differently
- Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
- Type of variables affects behavior of operators (shifting, comparison)
* We can only represent so many numbers in $w$ bits
- When we exceed the limits, arithmetic overflow occurs
- Sign extension tries to preserve value when expanding
* Shifting is a useful bitwise operator
- Right shifting can be arithmetic (sign) or logical (0)
- Can be used in multiplication with constant or bit masking


## Undefined Behavior in C

* How much undefined behavior have we talked about in just the past few lectures?
- Shifting by more than size of type
- No bounds checking in arrays
- Pointer nonsense
- Mystery data in unassigned variables
- ...and there will be more! (0)



## What does this tell us about the values that were embedded in C?

## C language (1978)

* Developed beginning in 1971, "standardized" in 1978
- Goal of writing Unix (precursor to Linux, macOS and others)
- Different time- faced with significant performance and resource limits
* Explicit Goals:
- Portability, performance (better than B, it's C!)


Your Perspectives on C

* What have you noticed about the way that C works?
- What does it make easy?
- Very discrete memory manipulation
- Total control of memory space
- What does it make difficult?
- Writing safe code...
- Strings"
- Pointer sorcery


## Perspectives on C

* Minimalist
- Relatively small, can be described in a small space, and learned quickly (or so it's claimed)
- "Only the bare essentials"
* Rugged
- Close to the hardware
- Shows what's really happening
* Eliteness
- "Real programmers can do pointer arithmetic!"

- Quickly slides into a "Back in my day!" situation...


## Consequences of $\mathbf{C}$

*"C is good for two things: being beautiful and creating catastrophic Odays in memory management." - Link to Medium Post

* "We shape our tools, and thereafter, our tools shape us." - John Culkin, 1967
* White House says no to C/C++! Is Joe Biden a rustacean?

```
jam1garner
@jam1garner
"cat", short for "C++ Analysis Tool", is a command line utility designed for analyzing a C++ program and displaying which lines of code are potentially unsafe
```


## Example:



30aM-Apr12,202
Also applies to C, of course.

## Maybe C is like... cilantro?

* Maybe you love it!
* Maybe you hate it!
* Maybe your feelings are more complicated than that!

* We're not trying to force you one way or another, we only ask that you try to appreciate both its benefits and its shortcomings.
* Mainly using C as a tool to understand computers.


Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1 b.

* Extract the $2^{\text {nd }}$ most significant byte of an int
* Extract the sign bit of a signed int
* Conditionals as Boolean expressions


## Practice Question 1

* Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
- UMin $=0$, UMax $=255$, TMin $=-128$, TMax $=127$
* 127 < (signed char) 128 u


## Practice Questions 2

* Assuming 8-bit integers:
- $0 \times 27=39$ (signed) $=39$ (unsigned)
- $0 \times$ D9 $=-39$ (signed) $=217$ (unsigned)
- $0 \times 7 \mathrm{~F}=127$ (signed) $=127$ (unsigned)
- $0 \times 81=-127$ (signed) $=129$ (unsigned)
*. For the following additions, did signed and/or unsigned overflow occur?
- 0x27 + 0x81

Signed: $39.0+(-127)_{10}=-88$,


$$
\begin{aligned}
\text { Unsigned: } \quad 39 & +129,168 \\
& \text { no unsigned ovectious }
\end{aligned}
$$

Signed: $127,10+(-39)_{10}=88$, no rigged overfly Unsigned: $12710+217_{10}=34410$

## Exploration Questions

For the following expressions, find a value of signed char x , if there exists one, that makes the expression True.

* Assume we are using 8-bit arithmetic:
- $x$ == (unsigned char) $x$

- $\mathrm{x}>=128 \mathrm{U}$ $x=0$
- $x \quad!=(x \gg 2) \ll 2$
- $\mathrm{X}=\mathrm{=}=\mathrm{X}$
- Hint: there are two solutions
- $(x<128 U) \& \&(x>0 x 3 F)$


## Using Shifts and Masks

* Extract the $2^{\text {nd }}$ most significant byte of an int:
- First shift, then mask: ( $x \gg 16$ ) \& $0 x F F$

| $\mathbf{x}$ | 00000001 | 00000010 | 0000001100000100 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x \gg 1 6}$ | 000000000000000000000001 | 00000010 |  |
| $0 \times F F$ | 00000000000000000000000011111111 |  |  |
| $(x \gg 16) \& ~ 0 x F F$ | 00000000000000000000000000000010 |  |  |

- Or first mask, then shift: (x \& $0 x F F 0000) \gg 16$

| x | 00000001 | 00000010 | 00000011 | 00000100 |
| :---: | :---: | :---: | :---: | :---: |
| 0xFFO000 | 00000000 | 11111111 | 00000000 | 00000000 |
| x \& 0xFF0000 | 00000000 | 00000010 | 00000000 | 00000000 |
| ( x \& $0 \times F F 0000$ ) >>16 | 00000000 | 00000000 | 0000000 | 00000010 |

## Using Shifts and Masks

* Extract the sign bit of a signed int:
- First shift, then mask: (x>>31) \& $0 \times 1$
- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

| $\mathbf{x}$ | 00000001000000100000001100000100 |
| :---: | :---: |
| $\mathbf{x \gg 3 1}$ | 00000000000000000000000000000000 |
| $0 \times 1$ | 00000000000000000000000000000001 |
| $(x \gg 31) \& 0 \times 1$ | 00000000000000000000000000000000 |


| $\mathbf{x}$ | 10000001000000100000001100000100 |
| :---: | :---: | :---: |
| $\mathbf{x \gg 3 1}$ | $1111111111111111111111111111111 \mathbf{1}$ |
| $0 \times 1$ | 00000000000000000000000000000001 |
| $(x \gg 31) \& 0 \times 1$ | 00000000000000000000000000000001 |

## Using Shifts and Masks

* Conditionals as Boolean expressions
- For int $x$, what does $(x \ll 31) \gg 31$ do?

| $x=!!123$ | 00000000000000000000000000000001 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{x \ll 3 1}$ | 10000000000000000000000000000000 |
| $(x \ll 31) \gg 31$ | 11111111111111111111111111111111 |
| $!x$ | 00000000000000000000000000000000 |
| $!x \ll 31$ | 00000000000000000000000000000000 |
| $(!x \ll 31) \gg 31$ | 00000000000000000000000000000000 |

- Can use in place of conditional:
- In C: if $(x)$ \{a=y;\} else $\{a=z ;\}$ equivalent to $a=x ? y: z$;
- $a=(((!!x \ll 31) \gg 31) \& y) \quad \mid(((!x \ll 31) \gg 31) \& z)$;

