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Announcements, Reminders

v HW4 due tonight, HW5 due Monday (8 Apr)
§ Ge#ng ahead a bit: no RD due for Friday due to combined RD9/10!

v Lab 1a due Monday (8 Apr)
§ Submit pointer.c and lab1Asynthesis.txt on Gradescope by deadline!

• Make sure there are no lingering printf statements in your code!

§ Can use (up to two) late day tokens to submit up un5l Wednesday 10 Apr at 11:59 PM
§ If you are submiBng with a partner, ensure that you add them to the submission

v Lab 1b due Monday (15 Apr)
§ Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt
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Exams

v Midterm and final exams will be taken on Gradescope
v Open for 48 hours and 72 hours respecKvely, no Kme limit

§ Designed to take 1-3 hours
§ Midterm open May 6th at 00:00, due May 7th at 23:59
§ Final open June 3rd at 00:00, due June 5th at 23:59

v Open book, open notes, open (.*)
§ But not group work—taken individually
§ High-level discussion with classmates OK, but you must write answers on your own 

(like labs, but without a partner)

v Mixture of problem-solving, design, and personal reflecKon quesKons 
(short answer & open ended)

3



CSE 351, Spring 2024L06:  Floating Point

Lab 1b Aside: C Macros

v C macros basics:
§ Basic syntax is of the form:  #define NAME expression
§ Allows you to use NAME instead of expression in code
• Does naïve copy and replace before compilaUon – everywhere the characters 
NAME appear in the code, the characters expression will now appear instead

• Not the same as a Java constant, but used in a similar way

§ Useful to help with readability/factoring in code

v You’ll use C macros in Lab 1b for defining bit masks
§ See Lab 1b starter code and LC4 slides (card operaKons) for examples
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Reading Review

v Terminology:
§ normalized scienKfic binary notaKon
§ trailing zeros
§ sign, manKssa, exponent ↔ bit fields S, M, and E
§ float, double
§ biased notaKon (exponent), implicit leading one (manKssa)
§ rounding errors
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Review Questions

v Convert 11.37510 to normalized binary 
scien8fic nota8on

v What is the value (in decimal) encoded by the following 
floa8ng-point number?
 

 0b  0 | 1000 0000 | 110 0000 0000 0000 0000 0000

  
§ exponent = E – bias, where bias = 2w-1-1
§ manUssa = 1.M

𝟐!𝟏 = 𝟎. 𝟓
𝟐!𝟐 = 𝟎. 𝟐𝟓
𝟐!𝟑 = 𝟎. 𝟏𝟐𝟓
𝟐!𝟒 = 𝟎. 𝟎𝟔𝟐𝟓
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Number Representa?on Revisited

v What can we represent in one word?
§ Signed and Unsigned Integers
§ Characters (ASCII)
§ Addresses

v How do we encode the following:
§ Real numbers (e.g., 3.14159)
§ Very large numbers (e.g., 6.02×1023)
§ Very small numbers (e.g., 6.626×10-34)
§ Special numbers (e.g., ∞, NaN)
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Floa%ng
Point

Cram it all into one encoding?! 
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Floa?ng Point Topics

v Frac3onal binary numbers
v IEEE floa3ng-point standard
v FloaKng-point operaKons and rounding
v FloaKng-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…
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Representation of Fractions

v Binary Point, like decimal point, signifies boundary between integer and 
fracKonal parts:

 Example 6-bit
 representaKon:

v Example: 
 

  10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510
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Binary Scien?fic Nota?on (Review)

v Normalized form: exactly one digit (non-zero) to lea of binary point

v Computer arithmeKc that supports this called floa3ng point due to the 
“floaKng” of the binary point
§ Declare such variable in C as float (or double)
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1.012   ×   2-1

radix (base)binary point

exponentman7ssa
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IEEE Floa?ng Point

v IEEE 754 (established in 1985)
§ Standard to make numerically-sensiUve programs portable
§ Specifies two things: representa(on scheme and result of floa(ng point opera(ons
§ Supported by all major CPUs

v Driven by numerical concerns
§ Scien=sts/numerical analysts want them to be as real as possible
§ Engineers want them to be easy to implement and fast. 
§ Who won?
    ScienUsts mostly won out:

• Nice standards for rounding, overflow, underflow, but... complex for hardware
• Float opera*ons can be an order of magnitude slower than integer ops ➔ so slow, it’s used

as a performance gauge! (e.g. FLOPS/s)
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Floa?ng Point Encoding (Review)

v Use normalized, base 2 scienKfic notaKon:
§ Value:  ±1 × ManUssa × 2Exponent

§ Bit Fields: (-1)S × 1.M × 2(E–bias)

v RepresentaKon Scheme:
§ Sign bit (0 is posiUve, 1 is negaUve)
§ ManUssa (a.k.a. significand) is the fracUonal part of the number in normalized form 

and encoded in bit vector M
§ Exponent weights the value by a (possibly negaUve) power of 2 and encoded in the 

bit vector E
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S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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The Exponent Field (Review)

v Use biased notaKon
§ Read exponent as unsigned, but with a bias of 2w-1-1 (bias = 127, for E of 8 bits)
§ Representable exponents roughly ½ posiUve and ½ negaUve
§ Exp = E – bias  ↔  E = Exp + bias

• Exponent value of 0 (Exp = 0) is thus represented as E = 0b 0111 1111

v Why biased?
§ Makes floaUng point arithmeUc easier—somewhat compaUble with two’s 

complement hardware.
§ Now it’s a sign-and-magnitude representaUon!
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The Man?ssa (Frac?on) Field (Review)

v Note the implicit leading 1 in front of M bit vector (Normalized form)
§ Example:  0b 0011 1111 1100 0000 0000 0000 0000 0000 

 Read as  1.12 = 1.510, not  0.12 = 0.510 , because of implicit leading 1
§ A “free” extra bit of precision!

v ManKssa “limits”
§ Low values near M = 0b000…000 are close to 2Exp

§ High values near M = 0b111…111 are close to 2Exp+1
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(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits
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Normalized Floa?ng Point Conversions

v FP → Decimal
1. Append the bits of M to 

implicit leading 1 to form 
the manUssa.

2. MulUply the manUssa by 
2E – bias.

3. MulUply the sign (-1)S.
4. MulUply out the 

exponent by shising the 
binary point.

5. Convert from binary to 
decimal.

v Decimal → FP
1. Convert decimal to binary.
2. Convert binary to normalized 

scienUfic notaUon.
3. Encode sign as S (0/1).
4. Add the bias to exponent and 

encode E as unsigned.
5. The first bits aser the leading 1 that 

fit are encoded into M.
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Example & Prac?ce Ques?on

v Convert the decimal number -11.375 into 
floaKng point representaKon

Exponent = E – bias ↔ E = Exponent + bias
ManUssa = 1.M
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𝟐!𝟏 = 𝟎. 𝟓
𝟐!𝟐 = 𝟎. 𝟐𝟓
𝟐!𝟑 = 𝟎. 𝟏𝟐𝟓
𝟐!𝟒 = 𝟎. 𝟎𝟔𝟐𝟓
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Precision and Accuracy

v Precision is a count of the number of bits in a computer word used to 
represent a value, i.e. capacity for accuracy

v Accuracy is a measure of the difference between the actual value of a 
number and its computer representaKon

High precision permits high accuracy but doesn’t guarantee it. It is 
possible to have high precision but low accuracy.

§ Example:  float pi = 3.14;
• pi will be represented using all 24 bits of the man=ssa (highly precise), but is only an 

approxima=on (not accurate)
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Need Greater Precision?

v Double Precision (vs. Single Precision) in 64 bits

§ C variable declared as double
§ Exponent bias is now 210–1 = 1023
§ Advantages: greater precision (larger manUssa), 

   greater range (larger exponent)
§ Disadvantages: more bits used,

   slower to manipulate
18

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0
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Floating Point Topics

v FracKonal binary numbers
v IEEE floaKng-point standard
v Floa3ng-point opera3ons and rounding
v Floa3ng-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…
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Special Cases & Encodings

v Case 1: E and M all zeros →  0
§ Wait, what about the S bit? Two zeros! 🤦 
     But at least 0x00000000 = 0 like integers

v Case 2: E = 0xFF, M = 0 →  ± ∞
§ e.g., division by 0
§ SUll work in comparisons!

v Case 3: E = 0xFF, M ≠ 0 →  Not a Number (NaN)
§ e.g., square root of negaUve number, 0/0, ∞–∞
§ NaN propagates through computaUons
§ Value of M can be useful in debugging 20

But wait, how to represent zero & other fun stuff...? 
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New Representa?on Limits due to Special Cases

v What’s now the largest value (besides ∞)?
§ E = 0xFF has now been taken by Case 2 & Case 3! 
§ E = 0xFE is now largest:  1.1…12×2127 = 2128 – 2104

v What are now the numbers closest to 0? (i.e. M = 0)
§ E = 0x00 taken by Case 1; so next smallest is E = 0x01
§ a = 1.0…002×2-126 = 2-126

§ b = 1.0…012×2-126 = 2-126 + 2-149

§ NormalizaUon and implicit leading 1 are to blame 
§ Leads to another Special case: E = 0, M ≠ 0 are denormalized numbers

• Man=ssa has implicit leading 0 instead of implicit leading 1
• Store much smaller numbers

21
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+∞-∞

Gaps!
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Floa?ng Point Decoding Flow Chart
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FP Bits What is the 
value of E?

What is the 
value of M?

−1 &×∞

NaN

−1 &×0.M×2'!()*+

−1 &×1.M×2,!()*+

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Distribu?on of Values (Review)

v What ranges are NOT representable?
§ Between largest norm and infinity
§ Between zero and smallest denorm
§ Between norm numbers?

v Given a FP number, what’s the next largest representable number?
§ What is this “step” when Exp = 0?       2-23

§ What is this “step” when Exp = 100?   277

v Distribution of values is denser toward zero:

23

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

You can represent really large 
numbers, or really precise 

numbers, but not both!
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Floa?ng Point Opera?ons: Basic Idea

v x +f y = Round(x + y)
v x *f y = Round(x * y)

v Basic idea for floaKng point operaKons:
§ First, compute the exact result
§ Then round the result to make it fit into the specified precision (width 

of M)
• Possibly over/underflow if exponent outside of range

24

S E M
Value = (-1)S × ManUssa × 2Exponent
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Mathema?cal Proper?es of FP Opera?ons

v Overflow yields ±∞ and underflow yields 0
v Floats with value ±∞ and NaN can be used in operations

§ Result usually still ±∞ or NaN, but not always intuitive

v Floating point operations do not work like real math, due to rounding
§ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
          0                   3.14

§ Not distributive:     100*(0.1+0.2)  !=  100*0.1+100*0.2
   30.000000000000003553         30

§ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

25
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Floa?ng Point in C

v Two common levels of precision:
float  1.0f   single precision (32-bit)
double  1.0    double precision (64-bit)

v #include <math.h> to get INFINITY and NAN constants
v #include <float.h> for addiKonal constants

v Equality (==) comparisons between floa3ng point numbers are tricky, 
and o[en return unexpected results, so just avoid them!

26
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Floa?ng Point Conversions in C

v CasKng between int, float, and double changes the bit 
representaKon
§ int → float

• May be rounded (not enough bits in man=ssa: 23)
• Overflow impossible

§ int or float → double
• Exact conversion (all 32-bit ints are representable)

§ long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

§ double or float → int
• Truncates frac=onal part (rounded toward zero)
• “Not defined” when out of range or NaN:  generally sets to TMin

(even if the value is a very big posi=ve)
27
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More on Floa?ng Point History

v Early days
§ First design with floaUng-point arithmeUc in 1914 by Leonardo 

Torres y Quevedo
§ ImplementaUons started in 1940 by Konrad Zuse, but with 

differing field lengths (usually not summing to 32 bits) and 
different subsets of the special cases

v IEEE 754 standard created in 1985
§ Primary architect was William Kahan, who won a Turing Award 

for this work
§ Standardized bit encoding, well-defined behavior for all 

arithmeUc operaUons

28
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Number Representa?on Really MaUers
v 1991: Patriot missile targeUng error

§ clock skew due to conversion from integer to floa=ng point

v 1996: Ariane 5 rocket exploded  ($1 billion)
§ overflow conver=ng 64-bit floa=ng point to 16-bit integer

v 2000: Y2K problem
§ limited (decimal) representa=on: overflow, wrap-around

v 2038: Unix epoch rollover
§ Unix epoch = seconds since 12am, January 1, 1970
§ signed 32-bit integer representa=on rolls over to TMin in 2038

v Other related bugs:
§ 1982: Vancouver Stock Exchange 10% error in less than 2 years
§ 1994: Intel Pen=um FDIV (floa=ng point division) HW bug ($475 million)
§ 1997: USS Yorktown “smart” warship stranded: divide by zero
§ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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Summary

v FloaKng point approximates real numbers:

§ Handles large numbers, small numbers, special numbers
§ Exponent in biased notaUon (bias = 2w-1 – 1)

• Size of exponent field determines our representable range
• Outside of representable exponents is overflow and underflow

§ ManUssa approximates fracUonal porUon of binary point
• Size of man=ssa field determines our representable precision
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

30

S E (8) M (23)
31 30 23 22 0



CSE 351, Spring 2024L06:  Floating Point

Summary

v Floats also suffer from the fixed number of bits available to 
represent them 
§ Can get overflow/underflow
§ “Gaps” produced in representable numbers means we can lose 

precision, unlike ints
• Some “simple frac=ons” have no exact representa=on (e.g., 0.2)
• “Every opera=on gets a slightly wrong result”

v FloaKng point arithmeKc not associaKve or distribuKve
§ MathemaUcally equivalent ways of wriUng an expression may compute 

different results

v Never test floaKng point values for equality!
v Careful when converKng between ints and floats!
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Summary

v FloaKng point encoding has many limitaKons
§ Overflow, underflow, rounding
§ Rounding is a HUGE issue due to limited manUssa bits and gaps that are scaled by 

the value of the exponent
§ FloaUng point arithmeUc is NOT associaUve or distribuUve

v ConverKng between integral and floaKng point data types does change 
the bits 

32

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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Some addiKonal informaKon about floaKng point 
numbers. We won’t test you on this, but you may find 
it interesKng J 
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Floa?ng Point Rounding

v The IEEE 754 standard actually specifies different rounding modes:
§ Round to nearest, Ues to nearest even digit
§ Round toward +∞ (round up)
§ Round toward −∞ (round down)
§ Round toward 0 (truncaUon)

v In our Kny example:
§ ManUssa = 1.001 01 rounded to M = 0b001
§ ManUssa = 1.001 11 rounded to M = 0b010
§ ManUssa = 1.001 10 rounded to M = 0b010
§ ManUssa = 1.000 10 rounded to M = 0b000
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This is extra 
(non-testable) 

material
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Floa?ng Point Encoding Flow Chart
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= special case

Value 𝑣 to 
encode

Is 𝑣 not a 
number?

±∞
E = all 1’s
M = all 0’s

NaN 
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when 
rounded, 
≥ FOver? 

Is 𝑣 , when 
rounded, 

< FDenorm? 

Is 𝑣 , when 
rounded, 
< FUnder? 

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

This is extra 
(non-testable) 

material
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Limits of Interest

v The following thresholds will help give you a sense of when certain 
outcomes come into play, but don’t worry about the specifics:

§ FOver = 2!"#$%& = 2'
• This is just larger than the largest representable normalized number

§ FDenorm = 2&(!"#$ = 2()
• This is the smallest representable normalized number

§ FUnder = 2&(!"#$(* = 2(+
• 𝑚 is the width of the man=ssa field
• This is the smallest representable denormalized number
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This is extra 
(non-testable) 

material
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Denormalized Numbers

v Denormalized numbers
§ No leading 1
§ Uses implicit exponent of –126 even though E = 0x00

v Denormalized numbers close the gap between zero 
and the smallest normalized number
§ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

§ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is s=ll a gap between zero and the smallest denormalized 
number
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So much
closer to 0

This is extra 
(non-testable) 

material
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Floa?ng Point in the “Wild”

v 3 formats from IEEE 754 standard widely used in computer hardware and 
languages
§ In C, called float, double, long double

v Common applicaKons:
§ 3D graphics: textures, rendering, rotaUon, translaUon
§ “Big Data”: scienUfic compuUng at scale, machine learning

v Non-standard formats in domain-specific areas:
§ Bfloat16: training ML models; 

range more valuable than precision
§ TensorFloat-32: Nvidia-specific 

hardware for Tensor Core GPUs
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Type S 
bits

E 
bits

M 
bits

Total 
bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

This is extra 
(non-testable) 

material


