
CSE 351, Spring 2024L07: x86-64 Programming I

x86-64 Programming I
CSE 351 Spring 2024

https://tapas.io/episode/753918

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

https://tapas.io/episode/753918

CSE 351, Spring 2024L07: x86-64 Programming I

Announcements, Reminders

v Lab1a and HW5 due tonight! (8 Apr)
§ HW6 due 10 Apr; HW7 due 15 Apr

v Lab 1b due 15 Apr by 11:59 PM:
§ No major programming restrictions, but avoid magic numbers by using C macros

(#define)
§ For debugging, can use provided utility functions print_binary_short() and
print_binary_long()

§ Pay attention to the output of aisle_test and store_test – failed tests will
show your actual vs. expected

§ Can use (up to two) late days to turn in by 17 Apr at 11:59 PM

v Reminder: 1-on-1 request form on course website!
v Synthesis questions: our goal is to assess learning, not to be pedantic

2

CSE 351, Spring 2024L07: x86-64 Programming I

Reading Review

v Terminology
§ Instruction Set Architecture (ISA): CISC vs. RISC
§ Instructions: data transfer, arithmetic/logical, control flow

• Size specifiers: b, w, l, q

§ Operands: immediates, registers, memory
• Memory operand: displacement, base register, index register,

scale factor

4

CSE 351, Spring 2024L07: x86-64 Programming I

Review Questions

Assume that the register %rdx currently holds the value:
 0x 01 02 03 04 05 06 07 08

v Answer the questions about the following instruction (<instr> <src> <dst>):
subq $1, %rdx

§ Operation type:
§ Operand types:
§ Operation width:
§ (extra) Result in %rdx:

5

CSE 351, Spring 2024L07: x86-64 Programming I

v Topic Group 1: Data
§ Memory, Data, Integers, Floating Point,

Arrays, Structs

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks,

Executables

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

6

⋮

CSE 351, Spring 2024L07: x86-64 Programming I

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks,

Executables

v How are programs created and executed on
a CPU?
§ How does your source code become something

that your computer understands?
§ How does the CPU organize and manipulate local

data?

The Hardware/Software Interface

7

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE 351, Spring 2024L07: x86-64 Programming I

But First: Definitions

v Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code
§ What is directly visible to software
§ The “contract” or “blueprint” between hardware and software

v Microarchitecture: Actual implementation of the architecture
§ CSE/EE 469

8

CSE 351, Spring 2024L07: x86-64 Programming I

ISAs are Born: IBM System/360 (1964)

9

CSE 351, Spring 2024L07: x86-64 Programming I

ISAs are Born: IBM System/360 (1964)

10

CSE 351, Spring 2024L07: x86-64 Programming I

Instruction Set Architectures (Review)

v The ISA defines:
§ The system’s state e.g., registers, memory, program counter (PC)
§ The instructions the CPU can execute
§ The effect that each of these instructions will have on the system state

11

CPU

MemoryPC

Registers

CSE 351, Spring 2024L07: x86-64 Programming I

General ISA Design Decisions

v Instructions
§ What instructions are available? What do they do?
§ How are they encoded?

v Registers
§ How many registers are there?
§ How wide are they?

v Memory
§ How do you specify a memory location?

12

CSE 351, Spring 2024L07: x86-64 Programming I

Instruction Set Philosophies (Review)

v Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed
§ Lots of tools for programmers to use, but hardware must be able to handle

all instructions
§ x86-64 is CISC, but only a small subset of instructions encountered with

Linux programs

v Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
§ Coined in 1980, but concept arguably existed before that (IBM 801,

Tanenbaum)
§ Easier to build fast, less power-hungry hardware
§ Let software do the complicated operations by composing simpler ones

13

CSE 351, Spring 2024L07: x86-64 Programming I

Instruction Set Philosophies (Review)

v Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as needed
§ Lots of tools for programmers to use, but hardware must be able to handle

all instructions
§ x86-64 is CISC, but only a small subset of instructions encountered with

Linux programs

v Ex: ADDSUBPS
§ “Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the

corresponding single-precision floating-point values from the second source operand (third operand); stores the
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-
precision floating-point values from the second source operand from the corresponding single-precision floating
values in the first source operand; stores the result into the even-numbered values of the destination operand.”

14

CSE 351, Spring 2024L07: x86-64 Programming I

Mainstream ISAs

15

PCs, some Macs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
M1/M2 Macs (new!)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE 351, Spring 2024L07: x86-64 Programming I

C Language

Architecture Sits at the Hardware Interface

16

x86-64

Intel Pentium 4

Intel Xeon

Intel Core i7

AMD Ryzen

AMD Epyc

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple M1

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

Transform C programs to “very elementary instructions” executable by hardware

CSE 351, Spring 2024L07: x86-64 Programming I

Architecture Sits at the Hardware Interface

17

GCC

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

See Section 3.2.2 in CSPP for more details…

long mult2(long, long);

void multstore(long x, long y, long *dest) {
 long t = mult2(x, y);
 *dest = t;
}

multstore:
 pushq %rbx
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 ret

hex:
53
48 89 d3
e8 00 00 00 00
48 89 03
5b
c3

Binary:
0101 0011
0100 1000 1000 1001 1101 0011
1110 1000 0000 0000 0000 0000 0000 0000 0000 0000
0100 1000 1000 1001 0000 0011
0101 1011
1100 0011

CSE 351, Spring 2024L07: x86-64 Programming I

Writing Assembly Code? Elba, are you serious?!
v Chances are, you’ll never write a program in assembly, but

understanding assembly is the key to the machine-level execution model:
§ Behavior of programs in the presence of bugs

• When high-level language model breaks down

§ Tuning program performance (very unlikely though…)
• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

§ Implementing systems software
• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside processor!

§ Fighting malicious software
• Distributed software is in binary form; how to find out what it’s doing?

18

CSE 351, Spring 2024L07: x86-64 Programming I

CPU

Assembly Programmer’s View

v Programmer-visible state
§ PC: the Program Counter (%rip in x86-64)

• Address of next instruction
§ Named registers

• Together in “register file”
• Heavily used program data

§ Condition codes
• Store status information about most recent

arithmetic operation
• Used for conditional branching 19

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

v Memory
§ Byte-addressable array
§ Code and user data
§ Includes the Stack (for

supporting procedures)

CSE 351, Spring 2024L07: x86-64 Programming I

x86-64 Assembly “Data Types”
v Integral data of 1, 2, 4, or 8 bytes (b, w, l, q)

§ Data values
§ Addresses

v Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
§ Different registers for those (e.g., %xmm1, %ymm2)
§ Come from extensions to x86 (SSE, AVX, …)

v No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

v Two common syntaxes—Must know which you’re reading!
§ “AT&T”: used by our course, slides, textbook, gnu tools, …
§ “Intel”: used by Intel documentation, Intel tools, …

20

Not covered
In 351

🚨 They have switched
operand orders! 🚨

CSE 351, Spring 2024L07: x86-64 Programming I

Instruction Types (Review)
1) Perform arithmetic operation on register or memory data

§ c = a + b; z = x << y; i = h & g;

2) Transfer data between memory and registers
§ Load data from memory into register

• %reg = Mem[address]

§ Store register data into memory
• Mem[address] = %reg

3) Control flow: what instruction to execute next
§ Unconditional jumps to/from procedures
§ Conditional branches

21

Remember: Memory is
indexed just like an array
of bytes!

CSE 351, Spring 2024L07: x86-64 Programming I

Instruction Sizes and Operands (Review)

v Instruction operand size specifiers
§ b = 1-byte “byte”, w = 2-byte “word”,
l = 4-byte “long word”, q = 8-byte “quad word”

History Note: Due to backwards-compatible support for 8086 programs
(Yes, 16-bit machines from 1978…), “word” means 16 bits = 2 bytes in x86
instruction names 😭

v Operand types
§ Immediate: Constant integer data ($)
§ Register: 1 of 16 general-purpose integer registers (%)
§ Memory: Consecutive bytes of memory at a computed address (())

22

CSE 351, Spring 2024L07: x86-64 Programming I

What is a Register? (Review)

v A location in the CPU that stores a small amount of data, which can be
accessed very quickly (once every clock cycle)

v Registers have names, not addresses
§ In assembly, they start with % (e.g., %rsi)

v Registers are at the heart of assembly programming
§ They are a precious commodity in all architectures, but especially x86-64

23

CSE 351, Spring 2024L07: x86-64 Programming I

Memory vs. Registers

v Addresses Names
§ 0x7FFFD024C3DC %rdi

v Big Small
§ ~ 16 GiB (16 x 8 B) = 128 B

v Slow Fast
§ ~50-100 ns sub-nanosecond timescale

v Dynamic Static
§ Can “grow” as needed fixed number in hardware

 while program runs

24

CSE 351, Spring 2024L07: x86-64 Programming I

x86-64 Integer Registers – 64 bits wide

§ Can reference low-order 4 bytes (also low-order 2 & 1 bytes)
25

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

Holds
Stack Pointer

Program Counter
(Very special register) %rip

CSE 351, Spring 2024L07: x86-64 Programming I

Some History: IA32 Registers – 32 bits wide

26

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

CSE 351, Spring 2024L07: x86-64 Programming I

Moving Data

v General form: mov_ source, destination
§ Really more of a “copy” than a “move”
§ Like all instructions, missing letter above (_) is the size specifier e.g. movq, movw
§ Lots of these in typical code

27

CSE 351, Spring 2024L07: x86-64 Programming I

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

28

Note: Cannot do memory-memory transfer with a single instruction
§ How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

CSE 351, Spring 2024L07: x86-64 Programming I

Some Arithmetic Operations

v Binary (two-operand) Instructions:
§ Beware argument order!

• src and dst can be immediate, register,
• or memory operands
• Results always stored in dst

§ No distinction between signed
and unsigned
• Only arithmetic vs.

logical shifts

29

Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src
operand size specifier

Maximum of one memory operand!

CSE 351, Spring 2024L07: x86-64 Programming I

Practice Question

v Which of the following are valid implementations of rcx = rax + rbx?

§ addq %rax, %rcx
addq %rbx, %rcx

§ movq $0, %rcx
addq %rbx, %rcx
addq %rax, %rcx

30

§ movq %rax, %rcx
addq %rbx, %rcx

§ xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx

CSE 351, Spring 2024L07: x86-64 Programming I

Summary

v x86-64 is a complex instruction set computing (CISC) architecture
§ There are 3 types of operands in x86-64
• Immediate ($), Register (%), Memory (())

§ There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow

37

