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Announcements, Reminders

v Lab1a and HW5 due tonight! (8 Apr)
§ HW6 due 10 Apr; HW7 due 15 Apr

v Lab 1b due 15 Apr by 11:59 PM:
§ No major programming restrictions, but avoid magic numbers by using C macros 

(#define)
§ For debugging, can use provided utility functions print_binary_short() and 
print_binary_long()

§ Pay attention to the output of aisle_test and store_test – failed tests will 
show your actual vs. expected

§ Can use (up to two) late days to turn in by 17 Apr at 11:59 PM

v Reminder: 1-on-1 request form on course website!
v Synthesis questions: our goal is to assess learning, not to be pedantic
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Reading Review

v Terminology
§ Instruction Set Architecture (ISA):  CISC vs. RISC
§ Instructions: data transfer, arithmetic/logical, control flow

• Size specifiers: b, w, l, q

§ Operands: immediates, registers, memory
• Memory operand: displacement, base register, index register, 

scale factor
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Review Questions

Assume that the register %rdx currently holds the value:
 0x 01 02 03 04 05 06 07 08

v Answer the questions about the following instruction (<instr> <src> <dst>):
subq $1, %rdx

§ Operation type:
§ Operand types:
§ Operation width:
§ (extra) Result in %rdx:
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v Topic Group 1: Data
§ Memory, Data, Integers, Floating Point, 

Arrays, Structs

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks, 

Executables

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface
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v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks, 

Executables

v How are programs created and executed on 
a CPU?
§ How does your source code become something 

that your computer understands?
§ How does the CPU organize and manipulate local 

data?

The Hardware/Software Interface
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But First: Definitions

v Architecture (ISA): The parts of a processor design 
that one needs to understand to write assembly code
§ What is directly visible to software
§ The “contract” or “blueprint” between hardware and software

v Microarchitecture: Actual implementation of the architecture
§ CSE/EE 469
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ISAs are Born: IBM System/360 (1964)

9



CSE 351, Spring 2024L07:  x86-64 Programming I

ISAs are Born: IBM System/360 (1964)
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Instruction Set Architectures (Review)

v The ISA defines:
§ The system’s state e.g., registers, memory, program counter (PC)
§ The instructions the CPU can execute
§ The effect that each of these instructions will have on the system state

11

CPU

MemoryPC

Registers
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General ISA Design Decisions

v Instructions
§ What instructions are available? What do they do?
§ How are they encoded?

v Registers
§ How many registers are there?
§ How wide are they?

v Memory
§ How do you specify a memory location?
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Instruction Set Philosophies (Review)

v Complex Instruction Set Computing (CISC):  
Add more and more elaborate and specialized instructions as needed 
§ Lots of tools for programmers to use, but hardware must be able to handle 

all instructions
§ x86-64 is CISC, but only a small subset of instructions encountered with 

Linux programs

v Reduced Instruction Set Computing (RISC):  
Keep instruction set small and regular
§ Coined in 1980, but concept arguably existed before that (IBM 801, 

Tanenbaum) 
§ Easier to build fast, less power-hungry hardware
§ Let software do the complicated operations by composing simpler ones
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Instruction Set Philosophies (Review)

v Complex Instruction Set Computing (CISC):  
Add more and more elaborate and specialized instructions as needed 
§ Lots of tools for programmers to use, but hardware must be able to handle 

all instructions
§ x86-64 is CISC, but only a small subset of instructions encountered with 

Linux programs

v Ex: ADDSUBPS
§ “Adds odd-numbered single-precision floating-point values of the first source operand (second operand) with the 

corresponding single-precision floating-point values from the second source operand (third operand); stores the 
result in the odd-numbered values of the destination operand (first operand). Subtracts the even-numbered single-
precision floating-point values from the second source operand from the corresponding single-precision floating 
values in the first source operand; stores the result into the even-numbered values of the destination operand.”
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Mainstream ISAs

15

PCs, some Macs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
M1/M2 Macs (new!)
ARM Instruction Set

Mostly research 
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf
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C Language

Architecture Sits at the Hardware Interface
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x86-64

Intel Pentium 4

Intel Xeon

Intel Core i7

AMD Ryzen

AMD Epyc

GCC

ARMv8 
(AArch64/A64)

ARM Cortex-A53

Apple M1

Clang

Your 
program

Program 
B

Program 
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different 
implementations

Hardware
Instruction set

Transform C programs to “very elementary instructions” executable by hardware
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Architecture Sits at the Hardware Interface
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GCC

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different 
implementations

Hardware
Instruction set

See Section 3.2.2 in CSPP for more details…

long mult2(long, long);

void multstore(long x, long y, long *dest) {
  long t = mult2(x, y);
  *dest = t;
}

multstore:
  pushq %rbx
  movq %rdx, %rbx
  call mult2
  movq %rax, (%rbx)
  popq %rbx
  ret

hex: 
53 
48 89 d3 
e8 00 00 00 00 
48 89 03 
5b 
c3

Binary: 
0101 0011 
0100 1000 1000 1001 1101 0011 
1110 1000 0000 0000 0000 0000 0000 0000 0000 0000 
0100 1000 1000 1001 0000 0011 
0101 1011 
1100 0011
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Writing Assembly Code? Elba, are you serious?!
v Chances are, you’ll never write a program in assembly, but 

understanding assembly is the key to the machine-level execution model:
§ Behavior of programs in the presence of bugs

• When high-level language model breaks down

§ Tuning program performance (very unlikely though…)
• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

§ Implementing systems software
• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside processor!

§ Fighting malicious software
• Distributed software is in binary form; how to find out what it’s doing? 
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CPU

Assembly Programmer’s View

v Programmer-visible state
§ PC: the Program Counter (%rip in x86-64)

• Address of next instruction
§ Named registers

• Together in “register file”
• Heavily used program data

§ Condition codes
• Store status information about most recent 

arithmetic operation
• Used for conditional branching 19

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

v Memory
§ Byte-addressable array
§ Code and user data
§ Includes the Stack (for 

supporting procedures)
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x86-64 Assembly “Data Types”
v Integral data of 1, 2, 4, or 8 bytes (b, w, l, q)

§ Data values
§ Addresses

v Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
§ Different registers for those (e.g., %xmm1, %ymm2)
§ Come from extensions to x86 (SSE, AVX, …)

v No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

v Two common syntaxes—Must know which you’re reading! 
§ “AT&T”: used by our course, slides, textbook, gnu tools, …
§ “Intel”: used by Intel documentation, Intel tools, …
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Not covered
In 351

🚨 They have switched      
operand orders! 🚨
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Instruction Types (Review)
1) Perform arithmetic operation on register or memory data

§ c = a + b;    z = x << y;    i = h & g;

2) Transfer data between memory and registers
§ Load data from memory into register

• %reg = Mem[address] 

§ Store register data into memory
• Mem[address] = %reg

3) Control flow: what instruction to execute next
§ Unconditional jumps to/from procedures
§ Conditional branches

21

Remember:  Memory is 
indexed just like an array 
of bytes!
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Instruction Sizes and Operands (Review)

v Instruction operand size specifiers
§ b = 1-byte “byte”, w = 2-byte “word”, 
l = 4-byte “long word”, q = 8-byte “quad word”

History Note: Due to backwards-compatible support for 8086 programs 
(Yes, 16-bit machines from 1978…), “word” means 16 bits = 2 bytes in x86 
instruction names 😭

v Operand types
§ Immediate:  Constant integer data ($)
§ Register:  1 of 16 general-purpose integer registers (%)
§ Memory:  Consecutive bytes of memory at a computed address (())
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What is a Register? (Review)

v A location in the CPU that stores a small amount of data, which can be 
accessed very quickly (once every clock cycle)

v Registers have names, not addresses
§ In assembly, they start with % (e.g., %rsi)

v Registers are at the heart of assembly programming
§ They are a precious commodity in all architectures, but especially x86-64
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Memory     vs.  Registers

v Addresses      Names
§ 0x7FFFD024C3DC %rdi

v Big       Small
§ ~ 16 GiB     (16 x 8 B) = 128 B

v Slow     Fast
§ ~50-100 ns    sub-nanosecond timescale

v Dynamic     Static
§ Can “grow” as needed   fixed number in hardware

  while program runs
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x86-64 Integer Registers – 64 bits wide

§ Can reference low-order 4 bytes (also low-order 2 & 1 bytes)
25

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

Holds 
Stack Pointer

Program Counter
(Very special register) %rip



CSE 351, Spring 2024L07:  x86-64 Programming I

Some History: IA32 Registers – 32 bits wide

26

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)
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Moving Data

v General form:  mov_ source, destination
§ Really more of a “copy” than a “move”
§ Like all instructions, missing letter above (_) is the size specifier e.g. movq, movw
§ Lots of these in typical code

27



CSE 351, Spring 2024L07:  x86-64 Programming I

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx
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Note: Cannot do memory-memory transfer with a single instruction
§ How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;
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Some Arithmetic Operations

v Binary (two-operand) Instructions:
§  Beware argument order!

• src and dst can be immediate, register, 
• or memory operands
• Results always stored in dst

§ No distinction between signed 
and unsigned
• Only arithmetic vs.

logical shifts
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Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

sarq src, dst dst = dst >> src Arithmetic

shrq src, dst dst = dst >> src Logical

shlq src, dst dst = dst << src (same as salq)

xorq src, dst dst = dst ^ src

andq src, dst dst = dst & src

orq src, dst dst = dst | src
operand size specifier

Maximum of one memory operand!
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Practice Question

v Which of the following are valid implementations of rcx = rax + rbx?

§ addq %rax, %rcx 
addq %rbx, %rcx

§ movq $0, %rcx
addq %rbx, %rcx 
addq %rax, %rcx
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§ movq %rax, %rcx
addq %rbx, %rcx

§ xorq %rax, %rax
addq %rax, %rcx
addq %rbx, %rcx
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Summary

v x86-64 is a complex instruction set computing (CISC) architecture
§ There are 3 types of operands in x86-64
• Immediate ($), Register (%), Memory (())

§ There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow
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