
CSE 351, Spring 2024L13: Executables & Arrays

Executables & Arrays
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L13: Executables & Arrays

Announcements, Reminders

v HW11 due tonight, HW12 due Wednesday, Lab 2 due Friday
v HW13/14 due next Wednesday (May 1st)

§ Based on the next few lectures, longer than normal.

v Mid-Quarter Assessment with Ken Yasuhara is next time!
v Midterm (take home, May 6th & May 7th)

§ Make notes and use the midterm reference sheet
§ Form study groups and look at past exams! ;)
§ Socio-technical content is fair game!

v GDB Demo for last class’s final example code is now on Ed!

2

https://courses.cs.washington.edu/courses/cse351/24sp/exams/ref-mt.pdf

CSE 351, Spring 2024L13: Executables & Arrays

Instruction Set Philosophies, Revisited

v Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as
needed
§ Design goals: complete tasks in as few instructions as possible; minimize

memory accesses for instructions

v Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
§ Design goals: build fast hardware; instructions should complete in few

clock cycles (ideally 1); minimize complexity and maximize performance

v How different are these two philosophies, really?

3

CSE 351, Spring 2024L13: Executables & Arrays

Instruction Set Philosophies, Revisited

v Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized instructions as
needed
§ Design goals: complete tasks in as few instructions as possible; minimize

memory accesses for instructions

v Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
§ Design goals: build fast hardware; instructions should complete in few

clock cycles (ideally 1); minimize complexity and maximize performance

v How different are these two philosophies, really?
§ Both pursue efficiency (where minimalism is a means to the same end!)

4

CSE 351, Spring 2024L13: Executables & Arrays

Exceedingly Dominant ISAsMainstream ISAs, Revisited

5

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE 351, Spring 2024L13: Executables & Arrays

Tech Monopolization

v How many “dominant” ISAs are there?
§ 2: x86, Arm

v How many “dominant” phone brands are there?
§ 4: Samsung, Apple, Huawei, Xiaomi

v How many “dominant” operating systems are there?
§ 3/4: Android, iOS/macOS, Windows, Linux (?)

v How many “dominant” chip manufacturers are there?
§ 3: Intel, Samsung, TSMC (Wait, no Arm? They’re blueprints dealers! Computer

architects with law degrees!)

It wasn’t always this way!
6

CSE 351, Spring 2024L13: Executables & Arrays

Assembly Discussion Questions

v We taught you assembly using x86-64; you didn’t have a choice…
§ What are some of the advantages of this choice?

§ What are some of the drawbacks of this choice?

7

CSE 351, Spring 2024L13: Executables & Arrays

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks,

Executables

v How are programs created and executed on a CPU?
§ How does your source code become something that your computer understands?
§ How does the CPU organize and manipulate local data?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

8

⋮

CSE 351, Spring 2024L13: Executables & Arrays

Reading Review

v Terminology:
§ CALL: compiler, assembler, linker, loader
§ Object file: symbol table, relocation table
§ Disassembly
§ Multidimensional arrays, row-major ordering
§ Multilevel arrays

9

CSE 351, Spring 2024L13: Executables & Arrays

From LC 7: Architecture Sits at the Hardware Interface

10

GCC

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

See Section 3.2.2 in CSPP for more details…

long mult2(long, long);

void multstore(long x, long y, long *dest) {
 long t = mult2(x, y);
 *dest = t;
}

multstore:
 pushq %rbx
 movq %rdx, %rbx
 call mult2
 movq %rax, (%rbx)
 popq %rbx
 ret

hex:
53
48 89 d3
e8 00 00 00 00
48 89 03
5b
c3

Binary:
0101 0011
0100 1000 1000 1001 1101 0011
1110 1000 0000 0000 0000 0000 0000 0000 0000 0000
0100 1000 1000 1001 0000 0011
0101 1011
1100 0011

I didn’t lie, per se, but I didn’t give all the details either.

CSE 351, Spring 2024L13: Executables & Arrays

CALL: Building an Executable with C (Review)
v Code in files p1.c p2.c
v Compile with command: gcc -Og p1.c p2.c -o p
v Run with command: ./p

11

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Assembly program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

Put resulting
machine code in
executable file p

CSE 351, Spring 2024L13: Executables & Arrays

Compiler (Review)

v Input: Higher-level language code (e.g., C, Java)
§ foo.c

v Output: Assembly language code (e.g., x86, ARM, MIPS)
§ foo.s

§ Example: gcc -Og -S foo.c

v First there’s a preprocessor step to handle #directives
§ Macro substitution, plus other specialty directives
§ If curious/interested: http://tigcc.ticalc.org/doc/cpp.html

v Super complex, whole courses devoted to these! (CSE 401)
v Compiler optimizations

§ “Level” of optimization specified by capital ‘O’ flag (e.g. -Og, -O3)
§ Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

12

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

CSE 351, Spring 2024L13: Executables & Arrays

Compiling Into Assembly (Review)
v C Code (sum.c)

v x86-64 assembly (gcc –Og –S sum.c)

Warning: You may get different results with other versions of gcc and
different compiler settings

13

void sumstore(long x, long y, long *dest) {
 long t = x + y;
 *dest = t;
}

sumstore(long, long, long*):
addq %rdi, %rsi
movq %rsi, (%rdx)
ret

Note: this is still “source code” in
a sense – human-readable

instructions, written out as text.

CSE 351, Spring 2024L13: Executables & Arrays

CALL: Building an Executable with C (Review)
v Code in files p1.c p2.c
v Compile with command: gcc -Og p1.c p2.c -o p
v Run with command: ./p

14

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Assembly program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

Put resulting
machine code in
executable file p

CSE 351, Spring 2024L13: Executables & Arrays

Assembler (Review)

v Input: Assembly language code (e.g., x86, ARM, MIPS)
§ foo.s

v Output: Object files (e.g., ELF, COFF)
§ foo.o
§ Very similar to assembly but a little different; Contains object code and information tables

v Example: gcc -c foo.s

v Reads and uses assembly directives
§ e.g., .text, .data, .quad
§ x86: https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

v Produces “machine language”

v Does its best, but object file is not a completed binary
15

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

CSE 351, Spring 2024L13: Executables & Arrays

Producing Machine Language (Review)

v Simple cases: arithmetic and logical operations, shifts, etc.
§ i.e. Instructions that don’t reference addresses are totally complete by this step.
§ All necessary information is contained in the instruction itself!

v Complex Cases: Un/Conditional jumps, Accessing static data (e.g., global
variable or jump table), call
§ Addresses and labels are problematic because the final executable hasn’t been

constructed yet, and won’t be until the next step (CALL)

So how do we deal with these in the meantime?

16

CSE 351, Spring 2024L13: Executables & Arrays

Object File Information Tables (Review)

Each object file has its own symbol and relocation tables!

v Symbol Table holds list of “items” that may be used by other files
i.e. “this is what I have & know about”
§ Non-local labels – function names usable for call
§ Static Data – variables & literals that might be accessed across files

v Relocation Table holds list of “items” that this file needs the address of
later (currently undetermined)
i.e. “what is still TODO”
§ Any label or piece of static data referenced in an instruction in this file

• Both internal and external
17

CSE 351, Spring 2024L13: Executables & Arrays

Object File Format
1) object file header: size and position of the other pieces of the object file
2) text segment: the machine code
3) data segment: data in the source file (binary)
4) relocation table: identifies lines of code that need to be “handled”
5) symbol table: list of this file’s labels and data that can be referenced
6) debugging information: -g flag creates debug information for use in GDB

v More info: ELF format
§ http://www.skyfree.org/linux/references/ELF_Format.pdf

18

http://www.skyfree.org/linux/references/ELF_Format.pdf

CSE 351, Spring 2024L13: Executables & Arrays

CALL: Building an Executable with C (Review)
v Code in files p1.c p2.c
v Compile with command: gcc -Og p1.c p2.c -o p
v Run with command: ./p

19

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Assembly program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

Put resulting
machine code in
executable file p

CSE 351, Spring 2024L13: Executables & Arrays

Linker (Review)
v Input: Object files (e.g., ELF, COFF)

§ foo.o

v Output: executable binary program
§ a.out

v Combines several object files into a single executable (linking)
v Enables separate compilation/assembling of files

§ Changes to one file do not require recompiling of whole program

20

CSE 351, Spring 2024L13: Executables & Arrays

Linking (Review)
1) Take text segment from each .o file and put them together
2) Take data segment from each .o file, put them together, and concatenate this onto

end of text segments
3) Resolve References: Go through Relocation Table; handle each entry

21

object file 1
info 1
data 1
text 1

object file 2
info 2
data 2
text 2

Linker

a.out

Relocated data 1

Relocated data 2

Relocated text 1

Relocated text 2

So what if we can’t resolve all references?

CSE 351, Spring 2024L13: Executables & Arrays

Linking (Review)

22

// tell the compiler that findme is in a different file
extern void findme();

int main() {
 findme();
 return 0;

}

$ gcc findme.c
/usr/bin/ld: /tmp/ccAQ36Zy.o: in function `main':
test.c:(.text+0xa): undefined reference to `findme'
collect2: error: ld returned 1 exit status

1) Take text segment from each .o file and put them together
2) Take data segment from each .o file, put them together, and concatenate this onto

end of text segments
3) Resolve References: Go through Relocation Table; handle each entry

CSE 351, Spring 2024L13: Executables & Arrays

Disassembling Object Code (Review)

v Disassembled:

v Disassembler (Ex: objdump -d sum)
§ Looks similar to assembly, but we actually have more info!
§ Useful tool for examining object code (man 1 objdump)
§ Analyzes bit pattern of series of instructions
§ Produces approximate rendition of assembly code
§ Can run on either executable or object file—you can (try to) disassemble anything…

23

0000000000400536 <sumstore>:
400536: 48 01 fe add %rdi,%rsi
400539: 48 89 32 mov %rsi,(%rdx)
40053c: c3 retq

CSE 351, Spring 2024L13: Executables & Arrays

What Can be Disassembled?

v Anything that can be interpreted as executable code!
v Disassembler examines bytes and attempts to reconstruct assembly source

24

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

CSE 351, Spring 2024L13: Executables & Arrays

CALL: Building an Executable with C (Review)
v Code in files p1.c p2.c
v Compile with command: gcc -Og p1.c p2.c -o p
v Run with command: ./p

25

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Assembly program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

Put resulting
machine code in
executable file p

CSE 351, Spring 2024L13: Executables & Arrays

Loader (Review)
v Input: executable binary program, command-line arguments

§ ./a.out arg1 arg2

v Output: <program is run>

v Loader duties primarily handled by OS/kernel
§ More about this when we learn about processes

v Memory sections (Instructions, Static Data, Stack) are set up
v Registers are initialized

v Want to implement this yourself? Take OS!

26

CSE 351, Spring 2024L13: Executables & Arrays

v Topic Group 1: Data
§ Memory, Data, Integers, Floating Point,

Arrays, Structs

v How do we store information for other parts of the house of computing
to access?
§ How do we represent data and what limitations exist?
§ What design decisions and priorities went into these encodings?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

27

⋮

CSE 351, Spring 2024L13: Executables & Arrays

Data Structures in C

v Arrays
§ One-dimensional
§ Multidimensional (nested)
§ Multilevel

v Structs
§ Alignment

28

CSE 351, Spring 2024L13: Executables & Arrays

Array Allocation (Review)

v Basic Principle
§ T A[N]; → array of data type T and length N
§ Contiguously allocated region of N*sizeof(T) bytes
§ Identifier A returns address of array (type T*)

29

char msg[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16
char* p[3];

(or char *p[3];)

x x + 8 x + 16 x + 24

CSE 351, Spring 2024L13: Executables & Arrays

Array Access (Review)

v Basic Principle
§ T A[N]; → array of data type T and length N
§ Identifier A returns address of array (type T*)

v Reference Type Value

30

int x[5]; 3 7 1 9 5

a a+4 a+8 a+12 a+16 a+20

x[4] int 5

x int* a

x+1 int* a + 4

&x[2] int* a + 8

x[5] int ?? (whatever’s in memory at addr x+20…)

*(x+1) int 7

x+i int* a + 4*i

CSE 351, Spring 2024L13: Executables & Arrays

Array Example

31

v Example arrays happened to be allocated in successive 20 byte blocks
§ Not guaranteed to happen in general

int columbia[5]; 1 0 0 2 7

16 20 24 28 32 36
int uw[5]; 9 8 1 9 5

36 40 44 48 52 56

int princeton[5]; 0 8 5 4 0

56 60 64 68 72 76

// arrays of ZIP code digits
 int columbia[5] = { 1, 0, 0, 2, 7 };
 int uw[5] = { 9, 8, 1, 9, 5 };
int princeton[5] = { 0, 8, 5, 4, 0 };

brace-enclosed list initialization; totally fine!

CSE 351, Spring 2024L13: Executables & Arrays

C Details: Arrays and Pointers

v Arrays are (almost) identical to pointers
§ char* string and char string[] are nearly identical declarations
§ Differ in subtle ways: initialization, sizeof(), etc.

v An array name is an expression (not variable) & returns address of the array
§ It looks like a pointer to the first (0th) element

• *ar same as ar[0], *(ar+2) same as ar[2]

§ An array name is read-only—no assignment allowed!—because it is a label
• Cannot do : ar = <anything>

32

CSE 351, Spring 2024L13: Executables & Arrays

C Details: Arrays and Functions

v Declared arrays only allocated while the scope is valid:
 char* foo() {
 char string[32]; ...;
 return string;
 }

v An array is passed to a function as a pointer:
§ Array size gets lost!

 int foo(int ar[], unsigned int size) {
 ... ar[size-1] ...
 }

33

Must explicitly
pass the size!

Really int* ar—you just made ar into a pointer!

CSE 351, Spring 2024L13: Executables & Arrays

Data Structures in C

v Arrays
§ One-dimensional
§ Multidimensional (nested)
§ Multilevel

v Structs
§ Alignment

34

CSE 351, Spring 2024L13: Executables & Arrays

v What is the layout in memory?

int sea[4][5] =
 {{ 9, 8, 1, 9, 5 },
 { 9, 8, 1, 0, 5 },
 { 9, 8, 1, 0, 3 },
 { 9, 8, 1, 1, 5 }};

Nested Array Example

35

Remember, T A[N] is
an array with elements
of type T, with length N

CSE 351, Spring 2024L13: Executables & Arrays

Nested Array Example

v “Row-major” ordering of all elements
§ Elements in the same row are contiguous
§ Guaranteed (in C)

36

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Row 0 Row 1 Row 2 Row 3

int sea[4][5] =
 {{ 9, 8, 1, 9, 5 },
 { 9, 8, 1, 0, 5 },
 { 9, 8, 1, 0, 3 },
 { 9, 8, 1, 1, 5 }};

Remember, T A[N] is
an array with elements
of type T, with length N

CSE 351, Spring 2024L13: Executables & Arrays

Two-Dimensional (Nested) Arrays

v Declaration: T A[R][C];
§ 2D array of data type T
§ R rows, C columns
§ Each element requires
sizeof(T) bytes

v Array size?

37

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CSE 351, Spring 2024L13: Executables & Arrays

Two-Dimensional (Nested) Arrays

v Declaration: T A[R][C];
§ 2D array of data type T
§ R rows, C columns
§ Each element requires
sizeof(T) bytes

v Array size:
§ R*C*sizeof(T) bytes

v Arrangement: row-major ordering

38

int A[R][C];

• • •
A

[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C bytes

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

CSE 351, Spring 2024L13: Executables & Arrays

Nested Array Row Access

v Row vectors
§ Given T A[R][C],

• A[i] is an array of C elements (“row i”)
• A is address of array
• Starting address of row i =

39

• • •• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+i*C*4 A+(R-1)*C*4

int A[R][C];

A + i*(C * sizeof(T))

CSE 351, Spring 2024L13: Executables & Arrays

• • •• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

Nested Array Element Access

v Array Elements
§ A[i][j] is element of type T; let sizeof(T) = t bytes
§ Address of A[i][j] is

40
?

CSE 351, Spring 2024L13: Executables & Arrays

Nested Array Element Access

v Array Elements
§ A[i][j] is element of type T; let sizeof(T) = t bytes
§ Address of A[i][j] is

 A + i*(C*t) + j*t = A + (i*C + j)*t

41
A + i*C*4 + j*4

• • •• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

CSE 351, Spring 2024L13: Executables & Arrays

Data Structures in C

v Arrays
§ One-dimensional
§ Multidimensional (nested)
§ Multilevel

v Structs
§ Alignment

42

CSE 351, Spring 2024L13: Executables & Arrays

Multilevel Array Example

v Multilevel Array Declaration(s):

§ Variable univ denotes array
 of 3 pointer elements

§ Each pointer points to a
separate array of ints
• Could have inner arrays of

different lengths!

43

int columbia[5] = { 1, 5, 2, 1, 3 };
 int uw[5] = { 9, 8, 1, 9, 5 };
int princeton[5] = { 0, 8, 5, 4, 0 };

int* univ[3] = {uw, columbia, princeton};

36160
16
60

168
176

univ

columbia

uw

princeton

1 0 0 2 7

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56
0 8 5 4 0

60 64 68 72 76 80

Note: this is how
Java represents

multidimensional
arrays!

CSE 351, Spring 2024L13: Executables & Arrays

Multilevel Array Element Access

44

v Mem[Mem[univ+8*index]+4*digit]
§ Must do two memory reads: (1) get pointer to row array, (2) access

element within array

int get_univ_digit (int index, int digit) {
 return univ[index][digit];
}

36160
16
60

168
176

univ

columbia

uw

princeton

1 0 0 2 7

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56
0 8 5 4 0

60 64 68 72 76 80

CSE 351, Spring 2024L13: Executables & Arrays

Array Element Accesses

Multidimensional array:

45

Multilevel array:
int get_sea_digit
 (int index, int digit)
{
 return sea[index][digit];
}

int get_univ_digit
 (int index, int digit)
{
 return univ[index][digit];
}

v Accesses look the same, but aren’t:

v Memory layout is different:
§ One array declaration → one contiguous block of memory

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

CSE 351, Spring 2024L13: Executables & Arrays

Summary

v Building an executable:
§ Multistep process: compiling, assembling, linking
§ Object code finished by linker using symbol and relocation tables to produce

machine code (with finalized addresses)
§ Loader sets up initial memory from executable

v Arrays:
§ Contiguous allocations of memory
§ No bounds checking (and no default initialization)
§ Can usually be treated like a pointer to first element
§ Multidimensional → array of arrays in one contiguous block
§ Multilevel → array of pointers to arrays

• Each array/part separate in memory
46

