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Relevant Course Information

v HW 12 due tonight; Lab 2 due Friday! 
§ Lab 3 released at the same time; due 08 May

v HW13/14 due 01 May
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Reading Review

v Terminology:
§ Structs:  tags and fields, . and -> operators
§ typedef
§ Alignment, internal fragmentation, external fragmentation
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Review Questions

v How much space (in bytes) does an instance of struct ll_node take?

v Which of the following independent statements are syntactically valid?
A. n1.next = &n2;
B. n2->data = 351;
C. n1.next->data = 333;
D. (&n2)->next->next.data = 451;
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struct ll_node {
  long data;
  struct ll_node* next;
} n1, n2;
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Data Structures in C

v Arrays
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment
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Structs in C (Review)

v User-defined structured group of variables, possibly including other structs
§ Kind of like Java object, but no methods nor inheritance; just fields 😤
§ Way of defining compound data types
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struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;
};

struct song song1;
song1.title = ”Lavender Haze";
song1.lengthInSeconds = 182;
song1.yearReleased = 2022;

struct song song2;
song2.title = ”State of Grace";
song2.lengthInSeconds = 295;
song2.yearReleased = 2012;

struct song {
  char* title;
  int lengthInSeconds;
  int yearReleased;

};

song1
title: ”Lavender Haze"
lengthInSeconds:      182
yearReleased:        2022

song2
title:   ”State of Grace"
lengthInSeconds:     295
yearReleased:       2012
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Struct Definitions (Review)

v Structure definition:
§ Does not declare a variable; lets compiler know we’re 

defining it and will be using instances of it
§ Variable type is “struct name”; gotta say it all every 

time we declare! Or do we?...

v Variable declarations like any other data type:

v Can also combine struct and instance definitions:

struct cat matilda;
struct cat *pc;
struct cat kitty_ar[3];

pointer
array

instance

struct cat {
  /* fields */
} c, *pc = &c;

struct cat {
  /* fields */ 
};

Really easy 
to forget 
the 
semicolon!
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Used in review question—this 
syntax can be difficult to read and 
do not recommend!
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Typedef in C (Review)

v A way to create an alias for another data type:
typedef <data type> <alias>;
§ After typedef, the alias can be used interchangeably with the original data type
§ e.g.,  typedef unsigned long int uli;
    unsigned long int x = 12131989;
    uli y = 12131989;  // can now use it like this!

v Joint struct definition and typedef
§ Don’t need to give struct a name in this case!
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typedef struct {
  /* fields */
} kitty;

kitty olivia;

struct cat {
  /* fields */
};
typedef struct cat kitty;
kitty olivia;
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Scope of Struct Definition (Review)

v Why is the placement of struct definition important?
§ Declaring a variable creates space for it somewhere
§ Without definition, program doesn’t know how much space to set aside!

v Almost always define structs in global scope near the top of your C file
§ Struct definitions follow normal rules of scope
§ Top of singular C files, or if using a header file, place there!
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struct data {
   int ar[4];
   long d;
};

Size = 24 bytes struct rec {
   int a[4];
   long i;
   struct rec* next;
};Size = 32 bytes
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Accessing Structure Members (Review)

v Given a struct instance, access member 
using the . operator:

struct rec r1;  
r1.i = val;

v Given a pointer to a struct:   
struct rec* r; // r is a pointer, remember!
r = &r1;  // or malloc space for r to point to

    We have two equivalent options:
• Use  *  and  .  operators:      (*r).i = val;
• Use  ->  operator (shorter):        r->i = val;

v In assembly: register holds address of the first byte
§ Access members with offsets
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struct rec {
    int a[4];
    long i;
    struct rec* next;
};
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Java side-note

v An instance of a class is like a pointer to a struct containing the fields
(Ignoring methods and subclassing for now)
§ So Java’s  x.f  is like C’s  x->f  or  (*x).f
§ Structs are really as close you can get to “objects” in Java

v In Java, almost everything is a pointer (“reference”) to an object
§ Cannot declare variables or fields that are structs or arrays
§ Always a pointer to a struct or array
§ So every Java variable or field is ≤ 8 bytes (but can point to lots of data)
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class Record { ... }
Record x = new Record();
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v Characteristics
§ Contiguously-allocated region of memory
§ Refer to members within structure by names
§ Fields may be of different types
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struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

Structure Representation (Review)

a

r

i next

0 16 24 32
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Structure Representation (Review)

v Structure represented as block of memory
§ Big enough to hold all the fields

v 🚨 Fields ordered according to declaration order 🚨
§ Even if another ordering would be more compact
§ Good reason: debugging is easier, since in assembly, only get addr of first byte

v Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the structures in 

the source code 13

struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32
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# pointer r in %rdi
  movq  16(%rdi), %rax
  ret

long get_i(struct rec* r) {
  return r->i;
}

Accessing a Structure Member

v Compiler knows the offset of each member
§ No pointer arithmetic; compute as *(r+offset_of_member)
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r->i

long get_a3(struct rec* r) {
  return r->a[3];
}

# pointer r in %rdi
  movl  12(%rdi), %rax
  ret

struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32
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# pointer r in %rdi

  leaq  16(%rdi), %rax

  ret

Pointer to Structure Member
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# pointer r in %rdi

  leaq  24(%rdi), %rax

  ret

long* addr_of_i(struct rec* r)
{
  return &(r->i);
}

struct rec** addr_of_next(struct rec* r)
{
  return &(r->next);
}

struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

r->i

a

r

i next

0 16 24 32

We can also get addresses of members themselves!

r->next
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# pointerr in %rdi, index in %rsi  
  leaq  (%rdi,%rsi,4), %rax
  ret

int* find_addr_of_array_elem
  (struct rec* r, long index)
{
  return &r->a[index];
}

Generating Pointer to Array Element

v Generating Pointer to 
Array Element
§ Offset of each structure 

member determined at 
compile time

§ Compute as:  
r+4*index
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r+4*index

&(r->a[index])

struct rec {
    int a[4];
    long i;
    struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32
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Struct Pointers

v Pointers store addresses, which all “look” the same
§ Lab 0 Example:  struct instance Scores could be treated as array of ints of size 4 

via pointer casting
§ A struct pointer doesn’t have to point to a declared instance of that struct type

v Different struct fields may or may not be meaningful, depending on what 
the pointer points to
§ 🚨 This will be important for Lab 5! 🚨
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long get_a3(struct rec* r) {
  return r->a[3];
}

movl  12(%rdi), %rax
  ret

r r+12

"r->a[3]"
Memory:
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Alignment Principles

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾
§ Required on some machines; advised on x86-64

v Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of bytes 

(width is system dependent)
• Important for caching and paging, virtual memory
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

§ Though x86-64 hardware will work regardless of alignment of data
18
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Memory Alignment in x86-64

v Aligned means that any primitive object of 𝐾 bytes must have an address 
that is a multiple of 𝐾

v Aligned addresses for data types:

19

𝐾 Type Addresses
1 char No restrictions
2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

0 2 4 6 8

Remember withinBlock from Lab1a? 
Yeah, you were essentially checking 
that the 6 LSBs were the same 😅
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Structures & Alignment (Review)

v Unaligned Data: just pack all together!

v Aligned Data: unused space, but benefits later on.
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾
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c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

struct S1 {
  char c;
  int i[2];
  double v;
} st, *p = &st;
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Satisfying Alignment with Structures

v Within structure:
§ Must satisfy each element’s alignment requirement

v Overall structure placement
§ Each structure has alignment requirement 𝐾!"#

• 𝐾!"# = Largest alignment of any element
• Counts array elements individually as elements

v Example:
§ 𝐾!"# = 8, due to double element
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c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8

struct S1 {
  char c;
  int i[2];
  double v;
} st, *p = &st;
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v Can find offset of individual fields 
using offsetof()
§ Need to #include <stddef.h>
§ Example:  offsetof(struct S2,c) returns 16

v For largest alignment requirement 𝐾!"#,
overall structure size must be multiple of 𝐾!"#
§ Compiler will add padding at end of structure to meet overall structure 

alignment requirement
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v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
  double v;
  int i[2];
  char c;
} st, *p = &st;

Okay, let’s try to do that…

Multiple of 8 Multiple of 8
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A Benefit: Arrays of Structures

v Overall structure length multiple of 𝐾"#$
v Satisfy alignment requirement for every 

element in array
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a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

struct S2 {
  double v;
  int i[2];
  char c;
} st, *p = &st;
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Alignment of Structs (Review)

v Compiler will do the following:
§ Still maintains declared ordering of fields in struct
§ Each field must be aligned within the struct 

(may insert padding)
• offsetof can be used to get actual field offset

§ Overall struct must be aligned according to largest field
§ Total struct size must be multiple of its alignment 

(may insert padding)
• sizeof should be used to get true size of structs
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How the Programmer Can Save Space

v Compiler must respect order elements are declared in
§ Sometimes the programmer can save space by declaring large data types first!

25

struct S4 {
  char c;
  int i;
  char d;
} st;

struct S5 {
  int i;
  char c;
  char d;
} st;

c i3 bytes d 3 bytes

12 bytes

ci d 2 bytes

8 bytes
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Practice Question
v Minimize the size of the struct by re-ordering the vars:

v What are the old and new sizes of the struct?
 sizeof(struct old) = 32 B sizeof(struct new) = _____

A. 22 bytes
B. 24 bytes
C. 28 bytes
D. 32 bytes
E. We’re lost… 26

struct old {
  int i;

  short s[3];

  char* c;

  float f;
};

struct new {
  int    i;

  ______ ______;

  ______ ______;

  ______ ______;
};
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Summary

v Arrays in C
§ Aligned to satisfy every element’s alignment requirement

v Structures
§ Allocate bytes for fields in order declared by programmer
§ Pad in middle to satisfy individual element alignment requirements
§ Pad at end to satisfy overall struct alignment requirement

27


