
CSE 351, Spring 2024L14: Structs & Alignment

Structs & Alignment
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L14: Structs & Alignment

Relevant Course Information

v HW 12 due tonight; Lab 2 due Friday!
§ Lab 3 released at the same time; due 08 May

v HW13/14 due 01 May

2

CSE 351, Spring 2024L14: Structs & Alignment

Reading Review

v Terminology:
§ Structs: tags and fields, . and -> operators
§ typedef
§ Alignment, internal fragmentation, external fragmentation

3

CSE 351, Spring 2024L14: Structs & Alignment

Review Questions

v How much space (in bytes) does an instance of struct ll_node take?

v Which of the following independent statements are syntactically valid?
A. n1.next = &n2;
B. n2->data = 351;
C. n1.next->data = 333;
D. (&n2)->next->next.data = 451;

4

struct ll_node {
 long data;
 struct ll_node* next;
} n1, n2;

CSE 351, Spring 2024L14: Structs & Alignment

Data Structures in C

v Arrays
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

5

CSE 351, Spring 2024L14: Structs & Alignment

Structs in C (Review)

v User-defined structured group of variables, possibly including other structs
§ Kind of like Java object, but no methods nor inheritance; just fields 😤
§ Way of defining compound data types

6

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;
};

struct song song1;
song1.title = ”Lavender Haze";
song1.lengthInSeconds = 182;
song1.yearReleased = 2022;

struct song song2;
song2.title = ”State of Grace";
song2.lengthInSeconds = 295;
song2.yearReleased = 2012;

struct song {
 char* title;
 int lengthInSeconds;
 int yearReleased;

};

song1
title: ”Lavender Haze"
lengthInSeconds: 182
yearReleased: 2022

song2
title: ”State of Grace"
lengthInSeconds: 295
yearReleased: 2012

CSE 351, Spring 2024L14: Structs & Alignment

Struct Definitions (Review)

v Structure definition:
§ Does not declare a variable; lets compiler know we’re

defining it and will be using instances of it
§ Variable type is “struct name”; gotta say it all every

time we declare! Or do we?...

v Variable declarations like any other data type:

v Can also combine struct and instance definitions:

struct cat matilda;
struct cat *pc;
struct cat kitty_ar[3];

pointer
array

instance

struct cat {
 /* fields */
} c, *pc = &c;

struct cat {
 /* fields */
};

Really easy
to forget
the
semicolon!

7

Used in review question—this
syntax can be difficult to read and
do not recommend!

CSE 351, Spring 2024L14: Structs & Alignment

Typedef in C (Review)

v A way to create an alias for another data type:
typedef <data type> <alias>;
§ After typedef, the alias can be used interchangeably with the original data type
§ e.g., typedef unsigned long int uli;
 unsigned long int x = 12131989;
 uli y = 12131989; // can now use it like this!

v Joint struct definition and typedef
§ Don’t need to give struct a name in this case!

8

typedef struct {
 /* fields */
} kitty;

kitty olivia;

struct cat {
 /* fields */
};
typedef struct cat kitty;
kitty olivia;

CSE 351, Spring 2024L14: Structs & Alignment

Scope of Struct Definition (Review)

v Why is the placement of struct definition important?
§ Declaring a variable creates space for it somewhere
§ Without definition, program doesn’t know how much space to set aside!

v Almost always define structs in global scope near the top of your C file
§ Struct definitions follow normal rules of scope
§ Top of singular C files, or if using a header file, place there!

9

struct data {
 int ar[4];
 long d;
};

Size = 24 bytes struct rec {
 int a[4];
 long i;
 struct rec* next;
};Size = 32 bytes

CSE 351, Spring 2024L14: Structs & Alignment

Accessing Structure Members (Review)

v Given a struct instance, access member
using the . operator:

struct rec r1;
r1.i = val;

v Given a pointer to a struct:
struct rec* r; // r is a pointer, remember!
r = &r1; // or malloc space for r to point to

 We have two equivalent options:
• Use * and . operators: (*r).i = val;
• Use -> operator (shorter): r->i = val;

v In assembly: register holds address of the first byte
§ Access members with offsets

10

struct rec {
 int a[4];
 long i;
 struct rec* next;
};

CSE 351, Spring 2024L14: Structs & Alignment

Java side-note

v An instance of a class is like a pointer to a struct containing the fields
(Ignoring methods and subclassing for now)
§ So Java’s x.f is like C’s x->f or (*x).f
§ Structs are really as close you can get to “objects” in Java

v In Java, almost everything is a pointer (“reference”) to an object
§ Cannot declare variables or fields that are structs or arrays
§ Always a pointer to a struct or array
§ So every Java variable or field is ≤ 8 bytes (but can point to lots of data)

11

class Record { ... }
Record x = new Record();

CSE 351, Spring 2024L14: Structs & Alignment

v Characteristics
§ Contiguously-allocated region of memory
§ Refer to members within structure by names
§ Fields may be of different types

12

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

Structure Representation (Review)

a

r

i next

0 16 24 32

CSE 351, Spring 2024L14: Structs & Alignment

Structure Representation (Review)

v Structure represented as block of memory
§ Big enough to hold all the fields

v 🚨 Fields ordered according to declaration order 🚨
§ Even if another ordering would be more compact
§ Good reason: debugging is easier, since in assembly, only get addr of first byte

v Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the structures in

the source code 13

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32

CSE 351, Spring 2024L14: Structs & Alignment

pointer r in %rdi
 movq 16(%rdi), %rax
 ret

long get_i(struct rec* r) {
 return r->i;
}

Accessing a Structure Member

v Compiler knows the offset of each member
§ No pointer arithmetic; compute as *(r+offset_of_member)

14

r->i

long get_a3(struct rec* r) {
 return r->a[3];
}

pointer r in %rdi
 movl 12(%rdi), %rax
 ret

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32

CSE 351, Spring 2024L14: Structs & Alignment

pointer r in %rdi

 leaq 16(%rdi), %rax

 ret

Pointer to Structure Member

15

pointer r in %rdi

 leaq 24(%rdi), %rax

 ret

long* addr_of_i(struct rec* r)
{
 return &(r->i);
}

struct rec** addr_of_next(struct rec* r)
{
 return &(r->next);
}

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

r->i

a

r

i next

0 16 24 32

We can also get addresses of members themselves!

r->next

CSE 351, Spring 2024L14: Structs & Alignment

pointerr in %rdi, index in %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

int* find_addr_of_array_elem
 (struct rec* r, long index)
{
 return &r->a[index];
}

Generating Pointer to Array Element

v Generating Pointer to
Array Element
§ Offset of each structure

member determined at
compile time

§ Compute as:
r+4*index

16

r+4*index

&(r->a[index])

struct rec {
 int a[4];
 long i;
 struct rec* next;
} st, *r = &st;

a

r

i next

0 16 24 32

CSE 351, Spring 2024L14: Structs & Alignment

Struct Pointers

v Pointers store addresses, which all “look” the same
§ Lab 0 Example: struct instance Scores could be treated as array of ints of size 4

via pointer casting
§ A struct pointer doesn’t have to point to a declared instance of that struct type

v Different struct fields may or may not be meaningful, depending on what
the pointer points to
§ 🚨 This will be important for Lab 5! 🚨

17

long get_a3(struct rec* r) {
 return r->a[3];
}

movl 12(%rdi), %rax
 ret

r r+12

"r->a[3]"
Memory:

CSE 351, Spring 2024L14: Structs & Alignment

Alignment Principles

v Aligned Data
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾
§ Required on some machines; advised on x86-64

v Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of bytes

(width is system dependent)
• Important for caching and paging, virtual memory
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

§ Though x86-64 hardware will work regardless of alignment of data
18

CSE 351, Spring 2024L14: Structs & Alignment

Memory Alignment in x86-64

v Aligned means that any primitive object of 𝐾 bytes must have an address
that is a multiple of 𝐾

v Aligned addresses for data types:

19

𝐾 Type Addresses
1 char No restrictions
2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

0 2 4 6 8

Remember withinBlock from Lab1a?
Yeah, you were essentially checking
that the 6 LSBs were the same 😅

CSE 351, Spring 2024L14: Structs & Alignment

Structures & Alignment (Review)

v Unaligned Data: just pack all together!

v Aligned Data: unused space, but benefits later on.
§ Primitive data type requires 𝐾 bytes
§ Address must be multiple of 𝐾

20

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

struct S1 {
 char c;
 int i[2];
 double v;
} st, *p = &st;

CSE 351, Spring 2024L14: Structs & Alignment

Satisfying Alignment with Structures

v Within structure:
§ Must satisfy each element’s alignment requirement

v Overall structure placement
§ Each structure has alignment requirement 𝐾!"#

• 𝐾!"# = Largest alignment of any element
• Counts array elements individually as elements

v Example:
§ 𝐾!"# = 8, due to double element

21

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8

struct S1 {
 char c;
 int i[2];
 double v;
} st, *p = &st;

CSE 351, Spring 2024L14: Structs & Alignment

v Can find offset of individual fields
using offsetof()
§ Need to #include <stddef.h>
§ Example: offsetof(struct S2,c) returns 16

v For largest alignment requirement 𝐾!"#,
overall structure size must be multiple of 𝐾!"#
§ Compiler will add padding at end of structure to meet overall structure

alignment requirement

22

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
 double v;
 int i[2];
 char c;
} st, *p = &st;

Okay, let’s try to do that…

Multiple of 8 Multiple of 8

CSE 351, Spring 2024L14: Structs & Alignment

A Benefit: Arrays of Structures

v Overall structure length multiple of 𝐾"#$
v Satisfy alignment requirement for every

element in array

23

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

struct S2 {
 double v;
 int i[2];
 char c;
} st, *p = &st;

CSE 351, Spring 2024L14: Structs & Alignment

Alignment of Structs (Review)

v Compiler will do the following:
§ Still maintains declared ordering of fields in struct
§ Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

§ Overall struct must be aligned according to largest field
§ Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

24

CSE 351, Spring 2024L14: Structs & Alignment

How the Programmer Can Save Space

v Compiler must respect order elements are declared in
§ Sometimes the programmer can save space by declaring large data types first!

25

struct S4 {
 char c;
 int i;
 char d;
} st;

struct S5 {
 int i;
 char c;
 char d;
} st;

c i3 bytes d 3 bytes

12 bytes

ci d 2 bytes

8 bytes

CSE 351, Spring 2024L14: Structs & Alignment

Practice Question
v Minimize the size of the struct by re-ordering the vars:

v What are the old and new sizes of the struct?
 sizeof(struct old) = 32 B sizeof(struct new) = _____

A. 22 bytes
B. 24 bytes
C. 28 bytes
D. 32 bytes
E. We’re lost… 26

struct old {
 int i;

 short s[3];

 char* c;

 float f;
};

struct new {
 int i;

 ______ ______;

 ______ ______;

 ______ ______;
};

CSE 351, Spring 2024L14: Structs & Alignment

Summary

v Arrays in C
§ Aligned to satisfy every element’s alignment requirement

v Structures
§ Allocate bytes for fields in order declared by programmer
§ Pad in middle to satisfy individual element alignment requirements
§ Pad at end to satisfy overall struct alignment requirement

27

