WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflows
CSE 351 Spring 2024

Them: How long have you been hacking?
Instructor:

Elba Garza Me: Since high school

. . Them: So you're a good hacker?
Teaching Assistants: mmain

Ellis Haker Maggie Jiang

Adithi Raghavan Malak Zaki

Aman Mohammed Naama Amiel ~
Brenden Page Nikolas McNamee /‘ !
Celestine Buendia Shananda Dokka _ g
Chloe Fong Stephen Ying

Claire Wang Will Robertson

Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Relevant Course Information
+» Lab 2 due tonight & Lab 3 releasing today, due May 8th

= You will have everything you need for it by the end of this lecture!
+ HW13/14 due May 15, HW15 due May 3"
+» Mid-Quarter Assessment results & write-up coming soon!
+» Canvas Mid-Quarter Survey releasing on May 1%t

= Part of EPA grade

= Particularly focusing on TA feedback
= Due May 6t"

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE 351, Spring 2024

Buffer Overflows

+» Address space layout review

+ Input buffers on the stack

+ Overflowing buffers and injecting code
+ Defenses against buffer overflows

L15: Buffer Overflows

WA/ UNIVERSITY of WASHINGTON

Review: General Memory Layout

Stack

= |ocal variables (procedure context)

L)

4

Heap

= Dynamically allocated as needed
" new,malloc(),calloc{(), ..

Statically-allocated Data
= Read/write: global variables (Static Data)
= Read-only: string literals (Literals)

0‘0

*

Code/Instructions

" Executable machine instructions

= Read-only

uZN_l

Stack

Heap

Static Data

Literals

Instructions

CSE 351, Spring 2024

not drawn to scale

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Memory Allocation Example

char big array[1L<<24]; /* 16 MB */
int global = 0; |
int useless!{) { retuzn 0; !

int main{) {
void *pl, 'n2;
int local - G; |
pl = malloc (lL << ZR) =/ —25&
p2 = malloc (1L << 8)5 ~ A%
/* Some print statements ... */

/ L

Where does everything go?

Stack

Heap

Static Data

Literals

Instructions

not drawn to scale!

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

What Is a Buffer?

+ A buffer is an array used to temporarily store data

+ You’'ve probably seen “video buffering...”
" The video is being written into a buffer before being played

BUFFERING

» Buffers can also be used to store user input... &

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

CSE 351, Spring 2024

Reminder: x86-64/Linux Stack Frame

o 5
.ts \ '
& ’s Stack Frame 'ﬂ\ ("ab\t
= Arguments (if > 6 args) for this call Caller <
Frame
+» Current/ Stack Frame

= Return address, pushed by call instruction

Frame pointer

= Old frame pointer (optional)

= Caller-saved registers pushed before setting up
arguments for a function call

= Callee-saved registers pushed before using long-
term registers

= |ocal variables, if can’t be kept in registers

(Optional)

= “Argument build” area—Need to call a function Stack pointer

with >6 arguments? Put them here!

TSP —

Arguments

Return Addr
Srbp—m— Old Srbp

Saved
Registers
+
Local
Variables

Argument
Build
(Optional)

Callee
Frame

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Buffer Overflow in a Nutshell

+» C does not check array bounds (aJ e Jo well Knoo ’f] nov.-)

= Many Unix/Linux/C functions don’t check argument sizes
= Allows overflowing—or, writing past the end—of buffers/arrays

« “Buffer Overflow” = Writing past the end of an array, intentionally or
unintentionally...

+ Key Observation: Characteristics of the traditional Linux memory layout
[provide opportunities]for malicious actions

= Stack grows “backwards” in memory
= Data and instructions both stored in the same memory!

L15: Buffer Overflows

CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

Buffer Overflow in a Nutshell

+ Stack grows down towards lower addresses

+ Buffer grows up towards higher addresses

+ If we write past the end of the array, we
overwrite data on the stack!

Enter input: hello

No overflow ©

Return
Address <

buf[7]

buf[0]

00

00

00

00

00

40

dd

bf

'\O'

'Ol

'l'

'l'

'el

'h'

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Buffer Overflow in a Nutshell

+ Stack grows down towards lower addresses

Return
. Address <
+ Buffer grows up towards higher addresses
+ If we write past the end of the array, we

overwrite data on the stack! buf{7]

Enter input: helloabcdef

buf[0]

00

00

00

00

'\O'

'f'

'el

'd'

'b'

'al

'Ol

'l'

'l'

'el

'h'

CSE 351, Spring 2024

10

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflow in a Nutshell [00
00
+ Stack grows down towards lower addresses 00
Return 0
A:dress < 7'\%’ oh
+ Buffer grows up towards higher addresses YR

+ If we write past the end of the array, we
overwrite data on the stack! buf{7]

'll
Enter input: helloabcdef o

buf[0 ‘h'
Buffer overflow! ® Hflo]

11

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflow in a Nutshell

+ Buffer overflows on the stack can overwrite “interesting” data

= Attackers just choose the right inputs

+ Simplest form: sometimes called “stack smashing”

= Unchecked length on string input into bounded array causes
overwriting of stack data

= Specifically, try to change the return address of the current procedure!

+ Why is this a big deal?

= |t was the #1 technical cause of security vulnerabilities!
- e.g. Heartbleed, cloudbleed, etc.

So let’s see
how systems

- #1 overall cause is social engineering/user ignorance & let us do this...

12

L15: Buffer Overflows CSE 351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

String Library Code

+ Actual source code implementation of Unix function gets ():

/* Get string from stdin _
one character at a time */ pOlnter to start
char* gets (char* dest) { <— of an array

int ¢ = getchar();

char* p = dest;

while (c != EOF && c != '\n') {
*pt+ = C; <«
c = getchar();

Same as:

}
*p= '\O'; p‘|‘+;
return dest;

What could go wrong in this code?

13

WA/ UNIVERSITY of WASHINGTON

String Library Code

L15: Buffer Overflows

CSE 351, Spring 2024

+ Actual source code implementation of Unix function gets ():

/* Get string from stdin
one character at a time */
char* gets(char* dest) {
int ¢ = getchar();
char* p = dest;
while (c != EOF && c != '\n')
*p++ = C;
c = getchar();
}
*p = "\0';
return dest;

{

\‘ }

Similar problems with other Unix
functions:

strcpy: Copies string of
arbitrary length to a dst

scanf, fscanf, sscanft,
when given % s specifier

/

@ No way to specify limit on number of characters to read! @

The man page for gets (3) now says “BUGS: Never use gets ().”

14

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

An Example: Vulnerable Buffer Code

void call echo()
echo () ;

}

/* Echo Line */

void echo () {
char buf[8]; /* Way too small! */
gets (buf) ; /* Read input into buf */
puts (buf) ; /* Print output from buf */

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

unix> ./buf-nsp
90 Enter string: 123456789012345
Segmentation fault (core dumped)

CSE 351, Spring 2024

15

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Buffer Overflow Disassembly (buf-nsp)

CSE 351, Spring 2024

call_echo:
0000000000401177 <call echo>:
401177: 48 83 ec 08 sub $0x8,%rsp
40117b: b8 00 00 00 00 mov $0x0, $eax
e8 cl ff ff ff [éallq 401146 <echo>
48 83 c4 08 add $0x8,%rsp
c3 retq

echo:

\
return address to place on stack

'y\ax ' K

Allocate 24 bytes in

401159:
40115e:
4011063:
4011068:
40116d:
401172:
401176:

48

48
b8
e8
48
e8
48
c3

83

8d
00
e8
8d
be
83

0000000000401146 <echo>:
4011406:

ec 18

7c 24 08
00 00 00
fe ff ff
7c 24 08
fe ff ff
cd 18

e

lea
mov
callq
lea
callq
[2ad
retq

l/ /
$Oxl8,%rs@

calls printf

— stack (compiler’s choice)

Calculate address location

0x8 ($rsp), srdi €
S0x0, $eax
401050 <gets@plt>

to be passed to gets

Calculate address location

QOX8 (3rsp), 5rdl €
401030 <puts@plt>

to be passed to puts

$Ox18,%rsék%

Clean up stack & return

16

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflow Stack

Before call to gets

/* Echo Line */

Stack frame for void echo ()
call echo {
char buf[8]; /* Way too small! */
r gets (buf) ;
Return address puts (buf) ;
(8 bytes) }
/—/__) 0
8 bytes unused echo: hasdt '
echo’s subg $24, S%rsp
stackframe< [71|161|[51|[4]

/lé;,c.q (%rsp), srdi | f stark boF et § 6(7/4.'.5

[31|[2]|[1]|[0]]| pur mov 0x0, $eax o
6/ call gets hon whea /"'J/ fo;’n&.

8 bytes unused

«—3rsp

Note: addresses increasing right-to-left, bottom-to-top

17

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflow Setup

Before call to gets

call_echo:

Stack frame for

call echo 401180: callq 401146 <echo>

401185: add $0x8,%rsp
(00| o00|00|00 :rA?‘?—. o
00[40]11]|85
id echo () echo:
8 bytes unused voi]
echo’s { subg $24, %rsp
tackframe< ciet e Lobhe [[B]] 7
> L7T|Tel][>5]]t4] gets (buf) ; leagq 8(3rsp), Srdi
[31(121|021]10]]| buf ... mov S0x0, $Seax
} call gets
8 bytes unused
«—3rsp

Note: addresses increasing right-to-left, bottom-to-top

18

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Buffer Overflow Example #1: 1234567

After call to gets

call_echo:

Stack frame for

call echo 401180: callq 401146 <echo>

401185: add $0x8,%rsp

0000 |00|00
0040|1185

8 bytes unused ‘{’°1d echo) ec};i;,q $24, Srsp
"\““\W char buf[8];
W“" 00437]36]35 gets (buf) ; leag 8 (%rsp), %rdi
(l w o
v el ;4 3313231 pus .. mov $0x0, Seax
WO / } call gets
8 bytes unused
«—3rsp
Note: Digit “N” i unix> ./buf-nsp
ote: Digit IS Enter string: 1234567
jUSt Ox3N in ASCII! 1234567

All good! No overflow. Phew! i

WA/ UNIVERSITY of WASHINGTON

Buffer Overflow Example #2: 123456789012345

After call to gets

A)
M

Stack frame for
call echo

0000 |00|00

‘:00}. 3513433

0040|1185

32131130|39

3813713635

;4 3313231

W
Q\&M oY 1&/

8 bytes unused

Note: Digit “N” is

just Ox3N in ASCII!

L15: Buffer Overflows

call_echo:
401180: callg 401146 <echo>
401185: add $0x8,%rsp

void echo () echo:
{ subg $24, %rsp
char buf[8]; ...
gets (buf) ; leaq 8 (%rsp), %rdi
buf ... mov S0x0, $Seax
} call gets
«—3rsp

unix> ./buf-nsp

Enter string: 123456789012345
123456789012345

Overflowed buffer, but did not corrupt state.

CSE 351, Spring 2024

20

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE 351, Spring 2024

Buffer Overflow Example #3: 1234567890123456

After call to gets

Stack frame for
call echo

00

00

00

00

40

36

35

34

00

N,

33

32

31

30

39

38

37

36

35

;4

33

32

31

4

/ 8 bytes unused

Note: Digit “N” is
just Ox3N in ASCII!

Overflowed buffer and corrupted return pointer!

unix> ./buf-nsp

Enter string:

call_echo:
401180: callg 401146 <echo>
\ 401185: add $0x8,%rsp
doe””
void echo () echo:
{ subg $24, %rsp
char buf([8]; ..
gets (buf) ; leaq 8 (%rsp), %rdi
Ut mov S0x0, $Seax
} call gets
«—3rsp

123456789012345

21

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE 351, Spring 2024

Buffer Overflow Example #3 Explained

After return from echo

Stack frame for
call echo

00

00

00

00_

00

40

11

36

35

34

33]

32

31

30

39

38

37

36

35

34

33

32

31

8 bytes unused

«—3rsp

buf

00000000004010d0 <register tm clones>:
4010d0:
4010d7:
4010de:
4010el:

4010e4:
4010e8:
4010ec:
4010ef:
4010f£2:
4010£4:
4010fDb:
4010fe:

401108:

lea
lea
sub
mov
shr
sar
add
sar
e
mov
test
e
Jjmpqg
nopw
retqg

0x2f6l1 (%rip), Srdi
0x2f5a (%rip), srsi
Srdi, Srsi

rsi, Srax

SO0x3f, %$rsi

S0x3, $rax

rax, srsi

%rsi

401108

Ox2efd (%rip), srax
grax, srax

401108

*$rax

0x0 (%rax, srax, 1)

“Returns” to a valid instruction, but bad indirect jump

SO program signals SIGSEGV,

Segmentation fault

22

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Attack Time

23

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Malicious Use of Buffer Overflow: Code Injection Attacks

Stack after call to gets ()
High Addresses

\
void foo () { f
bar () ; > i
A: ... : return address A stack frame
} r <
KB)
int bar () {
char buf[64]; data written { pad \. bar
gets (buf) ; by gets () stack frame
. o \g
. exploit code
\ return ...; buf starts here—s B —_ J
Input string contains byte representation of executable code row Addresses

Overwrite return address A with address of buffer B

When bar () executes ret, will jump to exploit code
24

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Don’t Execute Inputs, y’all.

HI, THIS 1S

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

!

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEARS STUDENT RECORDS.

I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
L TOSANMIZE YOUR

DATABASE INPUTS.

https://xkcd.com/327

CSE 351, Spring 2024

25

https://xkcd.com/327

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Practice Question

+ smash me is vulnerable to stack smashing!

+» What is the minimum number of characters that gets must read in
order for us to change the return address to a stack address?
" For example: (6x00 00 7f ff ca fe 0 0d)

64
- /6
Previous 64 " | + 6
her - —
stack frame l 5‘/
- smash me:
00| 00 [Y6 Do subg $040, %rsp B. 30
" E@r %% &60 leaq 16 (3rsp), srdi C', 51 /
S“" - call/Z_:jets ’ D. 54
\»QE“&ME’:;)
TN 01l \ o e E. We’re lost...
| — rsp H e I“? 2

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Exploits Based on Buffer Overflows

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

+ Distressingly common in real programs

" Programmers keep making the same mistakes ®
= Recent measures make these attacks much more difficult

+» Examples across the decades

= QOriginal “Internet worm” (1988)

= Heartbleed (2014, affected 17% of servers)
- Similar issue in Cloudbleed (2017)

= Hacking embedded devices

- Cars, smart homes, planes (yikes)

CSE 351, Spring 2024

27

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Dealing with buffer overflow attacks

1) Employ system-level protections

2) Have compiler use “stack canaries”

3) Avoid overflow vulnerabilities in the first place...

28

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

1) System-Level Protections

Stack after call

Non-executable code segments: to gets ()

+ In traditional x86, can mark region of) oo
memory as either “read-only” or “writeable” >]§::rcnke
= Can execute anything readable . <

+» X86-64 added explicit 2
“execute” permission data written pad bar

+ Stack marked as non-executable oyoets () | >1§::rcnke
= Do NOT execute code in Stack, Static Data, or ::;zl:it

B — J

Heap regions

®" Hardware support needed

Any attempt to execute this code will fail
29

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

1) System-Level Protections

Non-executable code segments: Wait,
doesn’t this fix everything?

+» Works well, but can’t always use it

Runthe code, Kronk.
+» Many embedded devices do not have this

protection

= e.g., cars, smart homes, pacemakers

+» Some exploits still work!
‘ I
= Return-oriented programming ‘;m“i’t"l“z"g codle!

= Return to libc attack |

= JIT-spray attack

{ A é\i]
s
‘Why'can we even exectute thatascode!?

30

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

1) System-Level Protections

Randomized stack offsets

<
= At start of program, allocate random aIIIRc?cnaqcioomn
amount of space on stack .
]] main’s
= Shifts stack addresses for entire program stack frame
- Addresses will vary from one run to another Other
= Makes it difficult for hacker to predict beginning of functions’

. stack frames
inserted code

B?
«» Example: Address of variable 1ocal for when Slide 5 .
. pa
code executed 3 times:
- 0x7ffd19d3f8ac, 0x7ffe8ad62c2c, 0x7ffe927c905c exploit
B? code

m Stack repositioned each time program executes

« Not infallible, sadly: re-run attack til it works, use lots of nops, etc.

31

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

CSE 351, Spring 2024

2) Stack Canaries

+ Basic ldea: place a special value (“canary”) on stack just beyond
buffer

= Secret value that is randomized before main |

= Placed between buffer and return address Retorn Adls
of
" Check for corruption before exiting function! "cﬁ,.da -
+» GCC implementation Bolles

" —-fstack-protector

unix>. /buf
Enter string: 12345678

unix> . /buf
Enter string: 123456789

12345678

*** stack smashing detected ***

The overflow example code in RD15 had a canary in place!

32

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

This is extra
Protected Buffer Disassembly (buf) (non-testable)
material
echo:

401156: push srbx

401157: sub $0x10, Srsp

40115b: mov S0x28, $Sebx

401160: mov $fs: (5rbx), Srax

401164: mov srax, 0x8 (srsp)

401169: xor Teax, seax

- call printf
40117d: callg 401060 <gets@plt>

401182: mov srsp, srdi

401185: callg 401030 <puts@plt>
40118a: mov 0x8 (%rsp), srax
40118f: xor $fs: (5rbx), Srax
401193: 7Jne 401190 <echo+0x45>
401195: add $0x10, Srsp

401199: pop Srbx

4011%9a: retq
40119%9b: callg 401040 < stack chk faillplt>

33

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

This is extra

Setting Up Canary (non-testable)

material

Before call to gets

/* Echo Line */

Stack frame for void echo ()
call echo {
char buf[8]; /* Way too small! */
gets (buf) ;
Return address puts (buf) ;
(8 bytes) }
Segment register
echo: (don’t worry about it))
Canary movq $fs:40, S%rax # Get canary
(8 bytes) movq srax, 8(%rsp) # Place on stack
xorl Teax, %eax # Erase canary
[71|[6][[5]|[4]

[STHIZNIL O] pur «—3rsp

34

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

CSE 351, Spring 2024

This is extra
Checking Canary (non-testable
materia
After call to gets
/* Echo Line */
Stack frame for void echo ()
call echo {

char buf[8]; /*
gets (buf) ;
puts (buf) ;

Way too small! */

Return address
(8 bytes) }

echo:

movq 8 (%rsp), %rax
Canary xorq %$fs:40, S%rax
(8 bytes) jne . L4

0037|3635
3413313231

retrieve from Stack
compare to canary
1f not same, FAIL

.L4: call stack chk fail
buf ¢—3%rsp

Input: 1234567

35

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

3) Avoid Overflow Vulnerabilities in Code

/* Echo Line */
void echo ()

{
char buf([8]; /* Way too small! */

@ets(buf, 8, stdin);
puts (buf) ;

¥ character read limit!

+ Use library routines that limit string lengths
'@gets instead of gets (2"¥ argument to fgets sets limit)

" styfcpy instead of strcpy

" Don’t use scanf with %$s conversion specification
- Use fgets toread the string
« Oruse $ns where n is a suitable integer

36

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

3) Avoid Overflow Vulnerabilities in Code

+ Alternatively, don’t use C—use a language that does array index bounds
check

= Buffer overflow is impossible in Java
- ArrayIndexOutOfBoundsException

+» What if | need a “low-level” systems language?

= Rust was designed with this in mind; Joe Biden is definitely a Rustacean S

" Golang has protection against this attack as well

+» But sometimes you still need to manually manipulate memory...

" Programming microprocessors or embedded systems — “poke” memory to perform
/O

37

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Summary of Prevention Measures

1) Employ system-level protections

= Code on the Stack is not executable
= Randomized Stack offsets

2) Have compiler use “stack canaries”

3) Avoid overflow vulnerabilities

= Use library routines that limit string lengths
= Use alanguage that makes them impossible

CSE 351, Spring 2024

38

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Think this is cool?

2 You'll love Lab 3 &
= Some parts must be run through GDB to disable certain security features!
+ Take CSE 484 (Security)

= Several different kinds of buffer overflow exploits
= Many ways to counter them

« Nintendo fun!

= Using glitches to rewrite code: https://www.youtube.com/watch?v=TgK-2jUQBUY
= Flappy Bird in Mario: https://www.youtube.com/watch?v=hB6eY73sLV0O

39

https://www.youtube.com/watch%3Fv=TqK%E2%80%902jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Example: the original Internet worm (1988)

+ Exploited a few vulnerabilities to spread

= Early versions of the finger server (fingerd) used gets () to read
the argument sent by the client:
« finger droh@cs.cmu.edu
= Worm attacked fingerd server with phony argument:
- finger "exploit-code padding new-return-addr"
- Exploit code: executed a root shell on the victim machine with a direct connection

to the attacker

« Scanned for other machines to attack

" |Invaded ~6000 computers in hours (10% of the Internet)
- see June 1989 article in Comm. of the ACM

"= The author of the worm (Robert Morris*) was prosecuted...

40

http://dl.acm.org/citation.cfm?id=66095

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Example: Heartbleed (2014)
HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “POTATO" (6 LETTERS).

ﬁ)
% w

ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

OOI O<DI

41

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Example: Heartbleed (2014)

SERVER, ARE YOU STILL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

J

Ham....

42

WA/ UNIVERSITY of WASHINGTON

L15: Buffer Overflows

Example: Heartbleed (2014)

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "HAT" (500 LETTERS),

/

ser Meg wants these 500 letters: HAT.

snakes but not too long". User Karen

N HAT. Lucas requests the "missed conne

ctions" page. Eve (administrator) wan
ts to set server’s master key to "148
35038534". Isabel wants pages about "

wants to change account password to "

CSE 351, Spring 2024

43

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows

Heartbleed Details

+ Buffer over-read in OpenSSL
= Open source security library
= Bugin a small range of versions

+« “Heartbeat” packet
= Specifies length of message
= Server echoes it back
= Library just “trusted” this length

= Allowed attackers to read contents of memory
anywhere they wanted

«» Est. 17% of Internet affected

= “Catastrophic”
= Github, Yahoo, Stack Overflow, Amazon AWS, ...

CSE 351, Spring 2024

§) Heartbeat - Normal usage

Server, send me S
this 4 letter word erver
if you are there: .
H W an bird
Client bird

W Heartbeat - Malicious usage

Server, send me

this 500 letter

word if you are
Client there: "bird"

bird. Server Server

master key is
31431498531054.
User Carol wants
to change
password to

"password 123"...
: 2

44

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Hacking Cars (2010)

+» UW CSE research demonstrated wirelessly hacking a car using buffer
overflow
" http://www.autosec.org/pubs/cars-oakland2010.pdf

+» Overwrote the onboard control system’s code
= Disable brakes, unlock doors, turn engine on/off

45

http://www.autosec.org/pubs/cars-oakland2010.pdf

WA/ UNIVERSITY of WASHINGTON L15: Buffer Overflows CSE 351, Spring 2024

Hacking DNA Sequencing Tech (2017)

Computer Security and Privacy in DNA Sequencing

Paul G. Allen School of Computer Science & Engineering, University of Washington

= Potential for malicious code to be encoded in DNA!

= Attacker can gain control of DNA sequencing machine when
malicious DNA is read

" Ney et al. (2017): https://dnasec.cs.washington.edu/

| |

‘ J JaN "N |"H ~

120 130
GAT AAAT CTGGTCTTATTTCC

BN |

Figure 1: Our synthesized DNA exploit

46

https://dnasec.cs.washington.edu/

