
CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflows
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L15: Buffer Overflows

Relevant Course Information
v Lab 2 due tonight & Lab 3 releasing today, due May 8th

§ You will have everything you need for it by the end of this lecture!

v HW13/14 due May 1st, HW15 due May 3rd
v Mid-Quarter Assessment results & write-up coming soon!
v Canvas Mid-Quarter Survey releasing on May 1st

§ Part of EPA grade
§ Particularly focusing on TA feedback
§ Due May 6th

2

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflows

v Address space layout review
v Input buffers on the stack
v Overflowing buffers and injecting code
v Defenses against buffer overflows

3

CSE 351, Spring 2024L15: Buffer Overflows

Review: General Memory Layout

v Stack
§ Local variables (procedure context)

v Heap
§ Dynamically allocated as needed
§ new, malloc(), calloc(), …

v Statically-allocated Data
§ Read/write: global variables (Static Data)
§ Read-only: string literals (Literals)

v Code/Instructions
§ Executable machine instructions
§ Read-only

4

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

0

2N-1

CSE 351, Spring 2024L15: Buffer Overflows

char big_array[1L<<24]; /* 16 MB */

int global = 0;

int useless() { return 0; }

int main() {
void *p1, *p2;
int local = 0;
p1 = malloc(1L << 28); /* 256 MB */
p2 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */
}

Memory Allocation Example

5

Instructions

Literals

Static Data

Heap

Stack

Where does everything go?

not drawn to scale!

CSE 351, Spring 2024L15: Buffer Overflows

What Is a Buffer?

v A buffer is an array used to temporarily store data
v You’ve probably seen “video buffering…”

§ The video is being written into a buffer before being played

v Buffers can also be used to store user input… 🤔
6

CSE 351, Spring 2024L15: Buffer Overflows

Reminder: x86-64/Linux Stack Frame
v Caller’s Stack Frame
§ Arguments (if > 6 args) for this call

v Current/Callee Stack Frame
§ Return address, pushed by call instruction
§ Old frame pointer (optional)
§ Caller-saved registers pushed before setting up

arguments for a function call
§ Callee-saved registers pushed before using long-

term registers
§ Local variables, if can’t be kept in registers
§ “Argument build” area—Need to call a function

with >6 arguments? Put them here!
7

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7, 8, …

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Lower Addresses

Higher Addresses

Callee
Frame

CSE 351, Spring 2024L15: Buffer Overflows

v C does not check array bounds
§ Many Unix/Linux/C functions don’t check argument sizes
§ Allows overflowing—or, writing past the end—of buffers/arrays

v “Buffer Overflow” = Writing past the end of an array, intentionally or
unintentionally…

v Key Observation: Characteristics of the traditional Linux memory layout
provide opportunities for malicious actions
§ Stack grows “backwards” in memory
§ Data and instructions both stored in the same memory!

8

Buffer Overflow in a Nutshell

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow in a Nutshell

v Stack grows down towards lower addresses

v Buffer grows up towards higher addresses

v If we write past the end of the array, we
overwrite data on the stack!

9Lower Addresses
buf[0]

buf[7]

'\0'

'o'

'l'

'l'

'e'

'h'

Enter input: hello

00

00

00

00

00

40

dd

bf

Return
Address

Higher Addresses

No overflow J

CSE 351, Spring 2024L15: Buffer Overflows

00

40

dd

bf

Buffer Overflow in a Nutshell 00

00

00

00

10

buf[0]

buf[7]

Return
Address

Enter input: helloabcdef

Lower Addresses

Higher Addresses

v Stack grows down towards lower addresses

v Buffer grows up towards higher addresses

v If we write past the end of the array, we
overwrite data on the stack!

'a'

'o'

'l'

'l'

'e'

'h'

'b'

'c'

'd'

'e'

'f'

'\0'

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow in a Nutshell 00

00

00

00

'\0'

'f'

'e'

'd'

11

buf[0]

buf[7] 'c'

'b'

'a'

'o'

'l'

'l'

'e'

'h'

Return
Address

Enter input: helloabcdef

Buffer overflow! L Lower Addresses

Higher Addresses

v Stack grows down towards lower addresses

v Buffer grows up towards higher addresses

v If we write past the end of the array, we
overwrite data on the stack!

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow in a Nutshell

v Buffer overflows on the stack can overwrite “interesting” data
§ Attackers just choose the right inputs

v Simplest form: sometimes called “stack smashing”
§ Unchecked length on string input into bounded array causes

overwriting of stack data
§ Specifically, try to change the return address of the current procedure!

v Why is this a big deal?
§ It was the #1 technical cause of security vulnerabilities!

• e.g. Heartbleed, cloudbleed, etc.
• #1 overall cause is social engineering/user ignorance 😬

12

So let’s see
how systems
let us do this…

CSE 351, Spring 2024L15: Buffer Overflows

String Library Code

v Actual source code implementation of Unix function gets():

What could go wrong in this code?

13

/* Get string from stdin
one character at a time */
char* gets(char* dest) {
 int c = getchar(); // read 1 byte
 char* p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

pointer to start
of an array

same as:
 *p = c;
 p++;

CSE 351, Spring 2024L15: Buffer Overflows

String Library Code

v Actual source code implementation of Unix function gets():

🚨 No way to specify limit on number of characters to read! 🚨

14

Similar problems with other Unix
functions:

§ strcpy: Copies string of
arbitrary length to a dst

§ scanf, fscanf, sscanf,
when given %s specifier

/* Get string from stdin
one character at a time */
char* gets(char* dest) {
 int c = getchar(); // read 1 byte
 char* p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

The man page for gets(3) now says “BUGS: Never use gets().”

CSE 351, Spring 2024L15: Buffer Overflows

An Example: Vulnerable Buffer Code

15

void call_echo() {
 echo();
}

/* Echo Line */
void echo() {
 char buf[8]; /* Way too small! */
 gets(buf); /* Read input into buf */
 puts(buf); /* Print output from buf */
}

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

unix> ./buf-nsp
Enter string: 1234567890123456
Segmentation fault (core dumped)

CSE 351, Spring 2024L15: Buffer Overflows

0000000000401146 <echo>:
 401146: 48 83 ec 18 sub $0x18,%rsp
 calls printf ...
 401159: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
 40115e: b8 00 00 00 00 mov $0x0,%eax
 401163: e8 e8 fe ff ff callq 401050 <gets@plt>
 401168: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
 40116d: e8 be fe ff ff callq 401030 <puts@plt>
 401172: 48 83 c4 18 add $0x18,%rsp
 401176: c3 retq

Buffer Overflow Disassembly (buf-nsp)

16

0000000000401177 <call_echo>:
 401177: 48 83 ec 08 sub $0x8,%rsp
 40117b: b8 00 00 00 00 mov $0x0,%eax
 401180: e8 c1 ff ff ff callq 401146 <echo>
 401185: 48 83 c4 08 add $0x8,%rsp
 401189: c3 retq

call_echo:

echo: return address to place on stack
Allocate 24 bytes in
stack (compiler’s choice)

Calculate address location
to be passed to gets

Calculate address location
to be passed to puts

Clean up stack & return

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow Stack

17

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 mov $0x0,%eax
 call gets
 ...

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Before call to gets

Stack frame for
call_echo

Return address
(8 bytes)

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

Note: addresses increasing right-to-left, bottom-to-top

echo’s
stack frame

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow Setup

18

Before call to gets

Stack frame for
call_echo

00 00 00 00

00 40 11 85

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

echo’s
stack frame

Note: addresses increasing right-to-left, bottom-to-top

call_echo:

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 mov $0x0,%eax
 call gets
 ...

. . .
 401180: callq 401146 <echo>
 401185: add $0x8,%rsp
 . . .

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow Example #1: 1234567

19

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

All good! No overflow. Phew!

Stack frame for
call_echo

00 00 00 00

00 40 11 85

8 bytes unused

00 37 36 35

34 33 32 31

8 bytes unused

After call to gets

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

buf

⟵%rsp

call_echo:

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 mov $0x0,%eax
 call gets
 ...

. . .
 401180: callq 401146 <echo>
 401185: add $0x8,%rsp
 . . .

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow Example #2: 123456789012345

20

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

Overflowed buffer, but did not corrupt state.

Stack frame for
call_echo

00 00 00 00

00 40 11 85

00 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

After call to gets

buf

⟵%rsp

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

call_echo:

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 mov $0x0,%eax
 call gets
 ...

. . .
 401180: callq 401146 <echo>
 401185: add $0x8,%rsp
 . . .

CSE 351, Spring 2024L15: Buffer Overflows

21

unix> ./buf-nsp
Enter string: 1234567890123456
Segmentation fault (core dumped)

Overflowed buffer and corrupted return pointer!

call_echo:
After call to gets

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

buf

⟵%rsp

Stack frame for
call_echo

00 00 00 00

00 40 11 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 mov $0x0,%eax
 call gets
 ...

. . .
 401180: callq 401146 <echo>
 401185: add $0x8,%rsp
 . . .

Note: Digit “𝑁” is
just 0x3𝑁 in ASCII!

Buffer Overflow Example #3: 1234567890123456

CSE 351, Spring 2024L15: Buffer Overflows

Buffer Overflow Example #3 Explained

22

00000000004010d0 <register_tm_clones>:
 4010d0: lea 0x2f61(%rip),%rdi
 4010d7: lea 0x2f5a(%rip),%rsi
 4010de: sub %rdi,%rsi
 4010e1: mov %rsi,%rax
 4010e4: shr $0x3f,%rsi
 4010e8: sar $0x3,%rax
 4010ec: add %rax,%rsi
 4010ef: sar %rsi
 4010f2: je 401108
 4010f4: mov 0x2efd(%rip),%rax
 4010fb: test %rax,%rax
 4010fe: je 401108
 401100: jmpq *%rax
 401102: nopw 0x0(%rax,%rax,1)
 401108: retq

“Returns” to a valid instruction, but bad indirect jump
so program signals SIGSEGV, Segmentation fault

⟵%rsp

After return from echo

buf

Stack frame for
call_echo

00 00 00 00

00 40 11 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

CSE 351, Spring 2024L15: Buffer Overflows

Attack Time

23

CSE 351, Spring 2024L15: Buffer Overflows

Malicious Use of Buffer Overflow: Code Injection Attacks

v Input string contains byte representation of executable code
v Overwrite return address A with address of buffer B
v When bar() executes ret, will jump to exploit code

24

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void foo(){
 bar();
A:...
}

return address A

Stack after call to gets()

A (return addr)

foo
stack frame

bar
stack frame

B

data written
by gets()

High Addresses

buf starts here
exploit code

pad

Low Addresses

A B

CSE 351, Spring 2024L15: Buffer Overflows

Don’t Execute Inputs, y’all.

25

https://xkcd.com/327

https://xkcd.com/327

CSE 351, Spring 2024L15: Buffer Overflows

Practice Question

v smash_me is vulnerable to stack smashing!
v What is the minimum number of characters that gets must read in

order for us to change the return address to a stack address?
§ For example: (0x00 00 7f ff ca fe f0 0d)

26

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

smash_me:
 subq $0x40, %rsp
 ...
 leaq 16(%rsp), %rdi
 call gets
 ...

A. 27
B. 30
C. 51
D. 54
E. We’re lost…

CSE 351, Spring 2024L15: Buffer Overflows

Exploits Based on Buffer Overflows

v Distressingly common in real programs
§ Programmers keep making the same mistakes L
§ Recent measures make these attacks much more difficult

v Examples across the decades
§ Original “Internet worm” (1988)
§ Heartbleed (2014, affected 17% of servers)

• Similar issue in Cloudbleed (2017)

§ Hacking embedded devices
• Cars, smart homes, planes (yikes)

27

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

CSE 351, Spring 2024L15: Buffer Overflows

Dealing with buffer overflow attacks

1) Employ system-level protections

2) Have compiler use “stack canaries”

3) Avoid overflow vulnerabilities in the first place…

28

CSE 351, Spring 2024L15: Buffer Overflows

1) System-Level Protections

Non-executable code segments:
v In traditional x86, can mark region of

memory as either “read-only” or “writeable”
§ Can execute anything readable

v x86-64 added explicit
“execute” permission

v Stack marked as non-executable
§ Do NOT execute code in Stack, Static Data, or

Heap regions
§ Hardware support needed

29

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

CSE 351, Spring 2024L15: Buffer Overflows

1) System-Level Protections

Non-executable code segments: Wait,
doesn’t this fix everything?
v Works well, but can’t always use it
v Many embedded devices do not have this

protection
§ e.g., cars, smart homes, pacemakers

v Some exploits still work!
§ Return-oriented programming
§ Return to libc attack
§ JIT-spray attack

30

CSE 351, Spring 2024L15: Buffer Overflows

Randomized stack offsets
§ At start of program, allocate random

amount of space on stack
§ Shifts stack addresses for entire program

• Addresses will vary from one run to another

§ Makes it difficult for hacker to predict beginning of
inserted code

v Example: Address of variable local for when Slide 5
code executed 3 times:

• 0x7ffd19d3f8ac, 0x7ffe8a462c2c, 0x7ffe927c905c

§ Stack repositioned each time program executes
• Not infallible, sadly: re-run attack til it works, use lots of nops, etc.

31

main’s
stack frame

Other
functions’

stack frames

Random
allocation

B?

B?

exploit
code

pad

Low Addresses

High Addresses1) System-Level Protections

CSE 351, Spring 2024L15: Buffer Overflows

2) Stack Canaries

v Basic Idea: place a special value (“canary”) on stack just beyond
buffer
§ Secret value that is randomized before main
§ Placed between buffer and return address
§ Check for corruption before exiting function!

v GCC implementation
§ -fstack-protector

32

unix>./buf
Enter string: 12345678
12345678

unix> ./buf
Enter string: 123456789
*** stack smashing detected ***

The overflow example code in RD15 had a canary in place!

CSE 351, Spring 2024L15: Buffer Overflows

Protected Buffer Disassembly (buf)

33

401156: push %rbx
 401157: sub $0x10,%rsp
 40115b: mov $0x28,%ebx
 401160: mov %fs:(%rbx),%rax
 401164: mov %rax,0x8(%rsp)
 401169: xor %eax,%eax
 call printf ...
 40117d: callq 401060 <gets@plt>
 401182: mov %rsp,%rdi
 401185: callq 401030 <puts@plt>
 40118a: mov 0x8(%rsp),%rax
 40118f: xor %fs:(%rbx),%rax
 401193: jne 40119b <echo+0x45>
 401195: add $0x10,%rsp
 401199: pop %rbx
 40119a: retq
 40119b: callq 401040 <__stack_chk_fail@plt>

echo:

This is extra
(non-testable)

material

CSE 351, Spring 2024L15: Buffer Overflows

Setting Up Canary

34

echo:
 . . .
 movq %fs:40, %rax # Get canary
 movq %rax, 8(%rsp) # Place on stack
 xorl %eax, %eax # Erase canary
 . . .

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Segment register
(don’t worry about it)

Before call to gets

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

[7][6][5][4]

[3][2][1][0] buf ⟵%rsp

This is extra
(non-testable)

material

CSE 351, Spring 2024L15: Buffer Overflows

Checking Canary

35

echo:
 . . .
 movq 8(%rsp), %rax # retrieve from Stack
 xorq %fs:40, %rax # compare to canary
 jne .L4 # if not same, FAIL
 . . .
.L4: call __stack_chk_fail

Input: 1234567

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

00 37 36 35

34 33 32 31

After call to gets
/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

buf ⟵%rsp

This is extra
(non-testable)

material

CSE 351, Spring 2024L15: Buffer Overflows

3) Avoid Overflow Vulnerabilities in Code

v Use library routines that limit string lengths
§ fgets instead of gets (2nd argument to fgets sets limit)
§ strncpy instead of strcpy
§ Don’t use scanf with %s conversion specification

• Use fgets to read the string
• Or use %ns where n is a suitable integer

36

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 fgets(buf, 8, stdin);
 puts(buf);
} character read limit!

CSE 351, Spring 2024L15: Buffer Overflows

3) Avoid Overflow Vulnerabilities in Code

v Alternatively, don’t use C—use a language that does array index bounds
check
§ Buffer overflow is impossible in Java

• ArrayIndexOutOfBoundsException

v What if I need a “low-level” systems language?
§ Rust was designed with this in mind; Joe Biden is definitely a Rustacean 🦀
§ Golang has protection against this attack as well

v But sometimes you still need to manually manipulate memory…
§ Programming microprocessors or embedded systems – “poke” memory to perform

I/O

37

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://rustacean.net/

CSE 351, Spring 2024L15: Buffer Overflows

Summary of Prevention Measures

1) Employ system-level protections
§ Code on the Stack is not executable
§ Randomized Stack offsets

2) Have compiler use “stack canaries”

3) Avoid overflow vulnerabilities
§ Use library routines that limit string lengths
§ Use a language that makes them impossible

38

CSE 351, Spring 2024L15: Buffer Overflows

Think this is cool?

v You’ll love Lab 3 😉
§ Some parts must be run through GDB to disable certain security features!

v Take CSE 484 (Security)
§ Several different kinds of buffer overflow exploits
§ Many ways to counter them

v Nintendo fun!
§ Using glitches to rewrite code: https://www.youtube.com/watch?v=TqK-2jUQBUY
§ Flappy Bird in Mario: https://www.youtube.com/watch?v=hB6eY73sLV0

39

https://www.youtube.com/watch%3Fv=TqK%E2%80%902jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV0

CSE 351, Spring 2024L15: Buffer Overflows

Example: the original Internet worm (1988)

v Exploited a few vulnerabilities to spread
§ Early versions of the finger server (fingerd) used gets() to read

the argument sent by the client:
• finger droh@cs.cmu.edu

§ Worm attacked fingerd server with phony argument:
• finger "exploit-code padding new-return-addr"
• Exploit code: executed a root shell on the victim machine with a direct connection

to the attacker

v Scanned for other machines to attack
§ Invaded ~6000 computers in hours (10% of the Internet)

• see June 1989 article in Comm. of the ACM

§ The author of the worm (Robert Morris*) was prosecuted…

40

http://dl.acm.org/citation.cfm?id=66095

CSE 351, Spring 2024L15: Buffer Overflows

Example: Heartbleed (2014)

41

CSE 351, Spring 2024L15: Buffer Overflows

Example: Heartbleed (2014)

42

CSE 351, Spring 2024L15: Buffer Overflows

Example: Heartbleed (2014)

43

CSE 351, Spring 2024L15: Buffer Overflows

Heartbleed Details
v Buffer over-read in OpenSSL

§ Open source security library
§ Bug in a small range of versions

v “Heartbeat” packet
§ Specifies length of message
§ Server echoes it back
§ Library just “trusted” this length
§ Allowed attackers to read contents of memory

anywhere they wanted

v Est. 17% of Internet affected
§ “Catastrophic”
§ Github, Yahoo, Stack Overflow, Amazon AWS, ...

44

By FenixFeather - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32276981

CSE 351, Spring 2024L15: Buffer Overflows

v UW CSE research demonstrated wirelessly hacking a car using buffer
overflow
§ http://www.autosec.org/pubs/cars-oakland2010.pdf

v Overwrote the onboard control system’s code
§ Disable brakes, unlock doors, turn engine on/off

Hacking Cars (2010)

45

http://www.autosec.org/pubs/cars-oakland2010.pdf

CSE 351, Spring 2024L15: Buffer Overflows

Hacking DNA Sequencing Tech (2017)

§ Potential for malicious code to be encoded in DNA!
§ Attacker can gain control of DNA sequencing machine when

malicious DNA is read
§ Ney et al. (2017): https://dnasec.cs.washington.edu/

46

https://dnasec.cs.washington.edu/

