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Relevant Course Information

v HW13/14 due Wednesday, May 1st; HW 15 due Friday May 3rd

v Mid-Quarter Survey (on Canvas) available Wednesday, May 1st

§ Due by Monday, May 6th — Let us know how the course is going for you, especially 
if you couldn’t join for the in-person assessment last week!

v Take-home Midterm (May 6th & 7th)
§ Instructions will be posted in Ed discussion later tonight!
§ You may discuss high-level concepts and give hints, but may not solve the problems 

together. No group work!
§ We will be available on Ed Discussion (private posts, pls) and office hours to answer 

clarifying questions.
§ In-class Vote: Do y’all want in-person lecture on the 6th, or lecture recording? 
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v Topic Group 1: Data
§ Memory, Data, Integers, Floating Point, 

Arrays, Structs

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks, 

Executables

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface
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v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation

v How do we maintain logical consistency in the face of more data and 
more processes?
§ How do we support control flow both within many processes and things external to 

the computer?
§ How do we support data access, including dynamic requests, across multiple 

processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface
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Aside: Units and Prefixes (Review)

v Here focusing on large numbers (exponents > 0)
v Note that 103 ≈ 210

v SI prefixes are ✨ambiguous✨ if base 10 or base 2
v IEC prefixes are unambiguously base 2
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How to Remember?

v Will be given to you on reference sheets 
§ And you can just look it up as needed J 

v Mnemonics
§ There unfortunately isn’t one well-accepted mnemonic

• But that shouldn’t stop you from trying to come with one!

§ Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel 
§ Kirby Missed Ganondorf Terribly, Potentially Exterminating Zelda and Yoshi
§ xkcd:  Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

• https://xkcd.com/992/ 
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Reading Review

v Terminology:
§ Caches: cache blocks, cache hit, cache miss
§ Principle of locality: temporal and spatial
§ Average memory access time (AMAT): hit time, miss penalty, 

                hit rate, miss rate
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Review Questions

v Convert the following to or from IEC:
§ 512 Mi-students
§ 233 cats

v Compute the average memory access time (AMAT) for the following 
system properties: 
§ Hit time of 2 ns
§ Miss rate of 1%
§ Miss penalty of 300 ns
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How does execution time grow with SIZE?
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int array[SIZE];  
int sum = 0;  

for (int i = 0; i < 200000; i++) {
  for (int j = 0; j < SIZE; j++) {
    sum += array[j];
  }
}
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Actual Data
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A timely analogy…
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Making memory accesses fast!

v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization
v Program optimizations that consider caches
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Processor-Memory Gap
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Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)
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Problem:  Processor-Memory Bottleneck
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Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory…
cycle: single machine step (fixed-time)
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Problem:  Processor-Memory Bottleneck
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Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)
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Cache 

v Pronunciation: “cash”
§ We abbreviate this as “$”

v English: A hidden storage space for provisions, weapons, and/or 
treasures 💎

v Computer: Memory with short access time used for the storage of 
frequently or recently used instructions (i-cache/I$) or data (d-cache/D$)
§ More generally: Used to optimize data transfers between any system elements 

with different characteristics (network interface cache, I/O cache, etc.)
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General Cache Mechanics (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

• Smaller, faster, more expensive 
memory

• Caches a subset of the blocks

movq (%rdi), %rax



CSE 351, Spring 2024L16:  Caches I

General Cache Concepts: Hit (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14 Block b is in cache:
Hit!

Data is returned to CPU
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General Cache Concepts: Miss (Review)
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU
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Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near 
or equal to those they have used recently.
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Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near 
or equal to those they have used recently.

v Temporal locality:  
§ Recently referenced items are likely 

to be referenced again in the near future

21
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Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near 
or equal to those they have used recently.

v Temporal locality:  
§ Recently referenced items are likely 

to be referenced again in the near future

v Spatial locality:  
§ Items with nearby addresses tend 

to be referenced close together in time

v How do caches take advantage of this?

22

block

block



CSE 351, Spring 2024L16:  Caches I

Example: Any Locality?

v Data:
§ Temporal: sum referenced in each iteration
§ Spatial: consecutive elements of array a[] accessed

v Instructions:
§ Temporal: cycle through loop repeatedly
§ Spatial: reference instructions in sequence
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sum = 0;
for (i = 0; i < n; i++) {
   sum += a[i];
}
return sum;
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int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];

    return sum;
}

Locality Example #1
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Access Pattern:
stride = 

M = 3, N=4

Note:  76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])
{
    int i, j, sum = 0;

    for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];

    return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a 
[0] 
[0]

a 
[0] 
[1]

a 
[0] 
[2]

a 
[0] 
[3]

a 
[1] 
[0]

a 
[1] 
[1]

a 
[1] 
[2]

a 
[1] 
[3]

a 
[2] 
[0]

a 
[2] 
[1]

a 
[2] 
[2]

a 
[2] 
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]

Locality Example #1
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int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];

    return sum;
}

Locality Example #2
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Locality Example #2
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int sum_array_cols(int a[M][N])
{
    int i, j, sum = 0;

    for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];

    return sum;
}

76 92 108

Layout in Memory
a 
[0] 
[0]

a 
[0] 
[1]

a 
[0] 
[2]

a 
[0] 
[3]

a 
[1] 
[0]

a 
[1] 
[1]

a 
[1] 
[2]

a 
[1] 
[3]

a 
[2] 
[0]

a 
[2] 
[1]

a 
[2] 
[2]

a 
[2] 
[3]

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = 

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]

M = 3, N=4
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Locality Example #3

v What is wrong 
with this code?

v How can it be 
fixed?
§ Want inner loop 

to be j, since 
those are only 
one int apart
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int sum_array_3D(int a[X][Y][Z])
{
    int i, j, k, sum = 0;

    for (i = 0; i < Y; i++)
        for (j = 0; j < Z; j++)
            for (k = 0; k < X; k++)
                sum += a[k][i][j];

    return sum;
}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] x = 0
x = 1

x =  2
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Cache Performance Metrics (Review)

v Huge difference between a cache hit and a cache miss
§ Could be 100x speed difference between accessing cache and main memory 

(measured in clock cycles)

v Miss Rate (MR)
§ Fraction of memory references not found in cache (misses / accesses) = 1 - Hit Rate

v Hit Time (HT)
§ Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

v Miss Penalty (MP)
§ Additional time required because of a miss
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Cache Performance (Review)

v Two things hurt the performance of a cache:
§ Miss rate and miss penalty

v Average Memory Access Time (AMAT):  average time to access 
memory considering both hits and misses

  AMAT = Hit time + Miss rate × Miss penalty
  (abbreviated AMAT = HT + MR × MP)

v 99% hit rate twice as good as 97% hit rate!
§ Assume HT of 1 clock cycle and MP of 100 clock cycles
      97%:  AMAT =                                        99%:  AMAT =
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Practice Question

v Processor specs:  200 ps clock, MP of 50 clock cycles, MR of 
0.02 misses/instruction, and HT of 1 clock cycle

 AMAT = 

v Which improvement would be best?
A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction
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Can we have more than one cache? 

v Why would we want to do that?
§ Avoid going to memory!

v Typical performance numbers:
§ Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g., < 1%), depending on parameters, etc.

§ Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

§ Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

32

Sure!
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An Example Memory Hierarchy
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registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years
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Summary

v Memory Hierarchy
§ Successively higher levels contain “most used” data from lower levels
§ Makes use of temporal and spatial locality
§ Caches are intermediate storage levels used to optimize data transfers between 

any system elements with different characteristics 

v Cache Performance
§ Ideal case: found in cache (hit)
§ Bad case: not found in cache (miss), search in next level
§ Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty
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