
CSE 351, Spring 2024L16: Caches I

Memory & Caches I
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L16: Caches I

Relevant Course Information

v HW13/14 due Wednesday, May 1st; HW 15 due Friday May 3rd

v Mid-Quarter Survey (on Canvas) available Wednesday, May 1st

§ Due by Monday, May 6th — Let us know how the course is going for you, especially
if you couldn’t join for the in-person assessment last week!

v Take-home Midterm (May 6th & 7th)
§ Instructions will be posted in Ed discussion later tonight!
§ You may discuss high-level concepts and give hints, but may not solve the problems

together. No group work!
§ We will be available on Ed Discussion (private posts, pls) and office hours to answer

clarifying questions.
§ In-class Vote: Do y’all want in-person lecture on the 6th, or lecture recording?

2

CSE 351, Spring 2024L16: Caches I

v Topic Group 1: Data
§ Memory, Data, Integers, Floating Point,

Arrays, Structs

v Topic Group 2: Programs
§ x86-64 Assembly, Procedures, Stacks,

Executables

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

3

⋮

CSE 351, Spring 2024L16: Caches I

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

v How do we maintain logical consistency in the face of more data and
more processes?
§ How do we support control flow both within many processes and things external to

the computer?
§ How do we support data access, including dynamic requests, across multiple

processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

4

⋮

CSE 351, Spring 2024L16: Caches I

Aside: Units and Prefixes (Review)

v Here focusing on large numbers (exponents > 0)
v Note that 103 ≈ 210

v SI prefixes are ✨ambiguous✨ if base 10 or base 2
v IEC prefixes are unambiguously base 2

5

CSE 351, Spring 2024L16: Caches I

How to Remember?

v Will be given to you on reference sheets
§ And you can just look it up as needed J

v Mnemonics
§ There unfortunately isn’t one well-accepted mnemonic

• But that shouldn’t stop you from trying to come with one!

§ Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel
§ Kirby Missed Ganondorf Terribly, Potentially Exterminating Zelda and Yoshi
§ xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo

• https://xkcd.com/992/

6

https://xkcd.com/992/

CSE 351, Spring 2024L16: Caches I

Reading Review

v Terminology:
§ Caches: cache blocks, cache hit, cache miss
§ Principle of locality: temporal and spatial
§ Average memory access time (AMAT): hit time, miss penalty,

 hit rate, miss rate

7

CSE 351, Spring 2024L16: Caches I

Review Questions

v Convert the following to or from IEC:
§ 512 Mi-students
§ 233 cats

v Compute the average memory access time (AMAT) for the following
system properties:
§ Hit time of 2 ns
§ Miss rate of 1%
§ Miss penalty of 300 ns

8

CSE 351, Spring 2024L16: Caches I

How does execution time grow with SIZE?

9

int array[SIZE];
int sum = 0;

for (int i = 0; i < 200000; i++) {
 for (int j = 0; j < SIZE; j++) {
 sum += array[j];
 }
}

SIZE

Ex
ec

ut
io

n
Ti

m
e

Plot:

CSE 351, Spring 2024L16: Caches I

Actual Data

10

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

CSE 351, Spring 2024L16: Caches I

A timely analogy…

11

CSE 351, Spring 2024L16: Caches I

Making memory accesses fast!

v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization
v Program optimizations that consider caches

12

CSE 351, Spring 2024L16: Caches I

Processor-Memory Gap

13

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE 351, Spring 2024L16: Caches I

Problem: Processor-Memory Bottleneck

14

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory…
cycle: single machine step (fixed-time)

CSE 351, Spring 2024L16: Caches I

Problem: Processor-Memory Bottleneck

15

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE 351, Spring 2024L16: Caches I

Cache

v Pronunciation: “cash”
§ We abbreviate this as “$”

v English: A hidden storage space for provisions, weapons, and/or
treasures 💎

v Computer: Memory with short access time used for the storage of
frequently or recently used instructions (i-cache/I$) or data (d-cache/D$)
§ More generally: Used to optimize data transfers between any system elements

with different characteristics (network interface cache, I/O cache, etc.)

16

CSE 351, Spring 2024L16: Caches I

General Cache Mechanics (Review)

17

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

movq (%rdi), %rax

CSE 351, Spring 2024L16: Caches I

General Cache Concepts: Hit (Review)

18

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14 Block b is in cache:
Hit!

Data is returned to CPU

CSE 351, Spring 2024L16: Caches I

General Cache Concepts: Miss (Review)

19

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE 351, Spring 2024L16: Caches I

Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near
or equal to those they have used recently.

20

CSE 351, Spring 2024L16: Caches I

Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near
or equal to those they have used recently.

v Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

21

block

CSE 351, Spring 2024L16: Caches I

Why Caches Work (Review)

v Locality: Programs tend to use data and instructions with addresses near
or equal to those they have used recently.

v Temporal locality:
§ Recently referenced items are likely

to be referenced again in the near future

v Spatial locality:
§ Items with nearby addresses tend

to be referenced close together in time

v How do caches take advantage of this?

22

block

block

CSE 351, Spring 2024L16: Caches I

Example: Any Locality?

v Data:
§ Temporal: sum referenced in each iteration
§ Spatial: consecutive elements of array a[] accessed

v Instructions:
§ Temporal: cycle through loop repeatedly
§ Spatial: reference instructions in sequence

23

sum = 0;
for (i = 0; i < n; i++) {
 sum += a[i];
}
return sum;

CSE 351, Spring 2024L16: Caches I

24

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];

 return sum;
}

Locality Example #1

CSE 351, Spring 2024L16: Caches I

25

Access Pattern:
stride =

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];

 return sum;
}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

1) a[0][0]
2) a[0][1]
3) a[0][2]
4) a[0][3]
5) a[1][0]
6) a[1][1]
7) a[1][2]
8) a[1][3]
9) a[2][0]

10) a[2][1]
11) a[2][2]
12) a[2][3]

Locality Example #1

CSE 351, Spring 2024L16: Caches I

26

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];

 return sum;
}

Locality Example #2

CSE 351, Spring 2024L16: Caches I

Locality Example #2

27

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];

 return sum;
}

76 92 108

Layout in Memory
a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

a
[1]
[0]

a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

a
[2]
[0]

a
[2]
[1]

a
[2]
[2]

a
[2]
[3]

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride =

1) a[0][0]
2) a[1][0]
3) a[2][0]
4) a[0][1]
5) a[1][1]
6) a[2][1]
7) a[0][2]
8) a[1][2]
9) a[2][2]

10) a[0][3]
11) a[1][3]
12) a[2][3]

M = 3, N=4

CSE 351, Spring 2024L16: Caches I

Locality Example #3

v What is wrong
with this code?

v How can it be
fixed?
§ Want inner loop

to be j, since
those are only
one int apart

28

int sum_array_3D(int a[X][Y][Z])
{
 int i, j, k, sum = 0;

 for (i = 0; i < Y; i++)
 for (j = 0; j < Z; j++)
 for (k = 0; k < X; k++)
 sum += a[k][i][j];

 return sum;
}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] x = 0
x = 1

x = 2

CSE 351, Spring 2024L16: Caches I

Cache Performance Metrics (Review)

v Huge difference between a cache hit and a cache miss
§ Could be 100x speed difference between accessing cache and main memory

(measured in clock cycles)

v Miss Rate (MR)
§ Fraction of memory references not found in cache (misses / accesses) = 1 - Hit Rate

v Hit Time (HT)
§ Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache

v Miss Penalty (MP)
§ Additional time required because of a miss

29

CSE 351, Spring 2024L16: Caches I

Cache Performance (Review)

v Two things hurt the performance of a cache:
§ Miss rate and miss penalty

v Average Memory Access Time (AMAT): average time to access
memory considering both hits and misses

 AMAT = Hit time + Miss rate × Miss penalty
 (abbreviated AMAT = HT + MR × MP)

v 99% hit rate twice as good as 97% hit rate!
§ Assume HT of 1 clock cycle and MP of 100 clock cycles
 97%: AMAT = 99%: AMAT =

30

CSE 351, Spring 2024L16: Caches I

Practice Question

v Processor specs: 200 ps clock, MP of 50 clock cycles, MR of
0.02 misses/instruction, and HT of 1 clock cycle

 AMAT =

v Which improvement would be best?
A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

31

CSE 351, Spring 2024L16: Caches I

Can we have more than one cache?

v Why would we want to do that?
§ Avoid going to memory!

v Typical performance numbers:
§ Miss Rate

• L1 MR = 3-10%
• L2 MR = Quite small (e.g., < 1%), depending on parameters, etc.

§ Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

§ Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

32

Sure!

CSE 351, Spring 2024L16: Caches I

An Example Memory Hierarchy

33

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE 351, Spring 2024L16: Caches I

Summary

v Memory Hierarchy
§ Successively higher levels contain “most used” data from lower levels
§ Makes use of temporal and spatial locality
§ Caches are intermediate storage levels used to optimize data transfers between

any system elements with different characteristics

v Cache Performance
§ Ideal case: found in cache (hit)
§ Bad case: not found in cache (miss), search in next level
§ Average Memory Access Time (AMAT) = HT + MR × MP

• Hurt by Miss Rate and Miss Penalty

34

