
CSE 351, Spring 2024L17: Caches II

Memory & Caches II
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L17: Caches II

Relevant Course Information

v HW13/14 due tonight
§ HW15 due Friday (03 May)

§ HW16 due Monday (06 May)

v Take-home Midterm, May 6th to May 7th

v Lab 3 due May 8th after the midterm!
v Mid-Quarter Canvas Survey out; closes on Monday, May 6th

v HW17/18 out today & due following Friday (10 May)
§ Don’t wait too long, this is a big homework & includes topics in this lecture!

2

CSE 351, Spring 2024L17: Caches II

Mid-Quarter Evalua7on w/ ET&L

v Things going well:
§ Pre-lecture readings, labs & video tutorials — very useful!

§ Section & office hours

§ TAs (Thanks so much for all you do, TAs!)

v Things to improve on:
§ Lecture Polls — usefulness & placement

§ Course pace & workload — Homeworks out at start of week? Weekly homework?

§ Absences

3

CSE 351, Spring 2024L17: Caches II

Current Events & CSE 351

v There may be interruptions to course resources:
§ Office Hours
§ Section
§ Grading

v Please bear with us as information comes in and the situation develops…

4

CSE 351, Spring 2024L17: Caches II

Memory Hierarchies (Review)

v Some fundamental and enduring properties of hardware and software
systems:
§ Faster storage technologies generally cost more per byte & have lower capacity
§ The gaps between memory technology speeds are widening:

 registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.
§ Well-written programs tend to exhibit good locality

v These properties complement each other & suggest approach for
organizing memory/storage systems known as a

Memory Hierarchy: For each level l, the faster, smaller device at
level l serves as a cache for the larger, slower device at level l+1

6

CSE 351, Spring 2024L17: Caches II

An Example Memory Hierarchy

7

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files retrieved
from disks on remote network
servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines (i.e. blocks) retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved from
main memory

Smaller,
faster,
costlier
per byte

CSE 351, Spring 2024L17: Caches II

An Example Memory Hierarchy

8

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE 351, Spring 2024L17: Caches II

Why hadn’t we talked about this before?!

9

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled
(e.g., refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

a program only sees “memory”;
the hardware manages caching—

but always good to be cache
aware!

CSE 351, Spring 2024L17: Caches II

Example Microarchitecture

10

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core n

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CSE 351, Spring 2024L17: Caches II

Making memory accesses fast! ⚡

v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization

§ Direct-mapped (sets; index + tag)
§ Associativity (ways)
§ Replacement policy
§ Handling writes

v Program optimizations that consider caches

11

CSE 351, Spring 2024L17: Caches II

Reading Review
v Terminology:
§ Memory hierarchy
§ Cache parameters:
• block size (𝐾)
• cache size (𝐶	for total size in B(ytes), or 𝑆 for number of blocks)

§ Addresses:
• block offset field (𝒌 bits wide)
• block address:

– index field (𝒔 bits wide)
– tag field (𝒕 bits wide)

§ Cache organization: direct-mapped cache
12

CSE 351, Spring 2024L17: Caches II

Review Ques7ons

v We have a direct-mapped cache with the following parameters:
§ Block size of 8 bytes
§ Cache size of 4 KiB

v How many blocks can the cache hold?
v How many bits wide is the block offset field?
v Which of the following addresses (possibly multiple) would fall under

block number 3?
A. 0x3 B. 0x1F C. 0x30 D. 0x38

13

CSE 351, Spring 2024L17: Caches II

Cache Organization (1)

v Block Size (𝐾): unit of transfer between $ and Mem
§ Given in bytes and always a power of 2 (e.g., 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

§ Small example (𝐾 = 4 B):

14

start of Mem → ← end of Mem
0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE

0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF

Block 0 Block 1 Block 2 Block 3

Note: The textbook
uses “b” for offset bits

CSE 351, Spring 2024L17: Caches II

Cache Organization (1)

v Block Size (𝐾): unit of transfer between $ and Mem
§ Given in bytes and always a power of 2 (e.g., 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)

• SpaYal locality!

15

Note: The textbook
uses “b” for offset bits

CSE 351, Spring 2024L17: Caches II

Cache Organization (1)

v Block Size (𝐾): unit of transfer between $ and Mem
§ Given in bytes and always a power of 2 (e.g., 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

v Offset field
§ Low-order log# 𝐾 = 𝒌 bits of address tell you which byte within a block

• (address) mod 2! = 𝑛 lowest bits of address

§ (address) modulo (# of bytes in a block)

16

Block Number Block Offset𝒎-bit address:
(refers to byte in memory)

𝒌 bits𝒎− 𝒌 bits

Note: The textbook
uses “b” for offset bits

CSE 351, Spring 2024L17: Caches II

Cache Organiza7on (1)

v Block Size (𝐾): unit of transfer between $ and Mem
§ Given in bytes and always a power of 2 (e.g., 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

v Example:
§ If we have 6-bit addresses and block size 𝐾 = 4 B, which block and byte does 0x15

refer to?

17

Note: The textbook
uses “b” for offset bits

CSE 351, Spring 2024L17: Caches II

Cache Organization (2)

v Cache Size (𝐶): amount of data the $ can store
§ Cache can only hold so much data (subset of next level)
§ Given in bytes (𝐶) or number of blocks (𝑆 = 𝐶/𝐾)

Example: 𝐶 = 32 KiB ➔ 512 blocks if using 64 B blocks

v Where should data go in the cache?
§ We need a mapping from memory addresses to specific locations in the cache to

make checking the cache for an address fast

v What is a data structure you’ve learned that provides fast lookup?
§ Hash table!

18

CSE 351, Spring 2024L17: Caches II

Hash Tables for Fast Lookup

19

0
1
2
3
4
5
6
7
8
9

Insert:
5
27
34
102
119

Apply hash function to map data to “buckets”

 e.g. hash function = N mod 10

CSE 351, Spring 2024L17: Caches II

Place Data in Cache by Hashing Address

v Map to cache index from block number
§ Num of Index bits: log# 𝑆) 	= log#(𝐶/𝐾
	 	 											 	 									= 𝒔 bits for index

§ Index location: (block number) mod (# blocks in cache)

20

Address Block
0000XX
0001XX
0010XX
0011XX
0100XX
0101XX
0110XX
0111XX
1000XX
1001XX
1010XX
1011XX
1100XX
1101XX
1110XX
1111XX

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L17: Caches II

Place Data in Cache by Hashing Address

21

v Map to cache index from block number
§ Allows adjacent blocks to fit in cache

simultaneously!
• Consecutive blocks go in consecutive cache

indices

Address Block
0000XX
0001XX
0010XX
0011XX
0100XX
0101XX
0110XX
0111XX
1000XX
1001XX
1010XX
1011XX
1100XX
1101XX
1110XX
1111XX

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L17: Caches II

Polling Question

v 6-bit addresses, block size 𝐾 = 4 B, and our cache holds 𝑆 = 4 blocks.
v A request for address 0x2A results in a cache miss. Which index does

this block get loaded into and which 3 other addresses are loaded along
with it?

22

Block:

CSE 351, Spring 2024L17: Caches II

Place Data in Cache by Hashing Address

v What if blocks index similarly?
v Collision!

§ This might confuse the cache later
when we access the data…

§ How can we identify individual
blocks with the same index?

23

Address Block
0000XX
0001XX
0010XX
0011XX
0100XX
0101XX
0110XX
0111XX
1000XX
1001XX
1010XX
1011XX
1100XX
1101XX
1110XX
1111XX

Memory Cache
Index Block Data
00
01
10
11

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L17: Caches II

Tags Differentiate Blocks in Same Index

v Tag = rest of address bits
§ 𝒕 bits = 𝒎− 𝒔 − 𝒌
§ Check this during a cache lookup

24

Address Block
0000XX
0001XX
0010XX
0011XX
0100XX
0101XX
0110XX
0111XX
1000XX
1001XX
1010XX
1011XX
1100XX
1101XX
1110XX
1111XX

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L17: Caches II

Checking for a Requested Address

v CPU sends address request for chunk of data
§ Address and requested data are not the same thing!

• Analogy: your friend ≠ their phone number

v TIO address breakdown:

§ Index field tells you where to look in cache
§ Tag field lets you check that data is the block you want
§ Offset field selects specified start byte within block

§ Note: 𝒕 and 𝒔 sizes will change based on hash function
25

Tag (𝒕) Offset (𝒌)𝒎-bit address:

Block Number

Index (𝒔)

CSE 351, Spring 2024L17: Caches II

Cache Puzzle Example

v Based on the following behavior, which of the following block sizes is
NOT possible for our cache?
§ Cache starts empty, also known as a cold cache
§ Access (addr: hit/miss) stream:

• (14: miss), (15: hit!), (16: miss)

A. 4 bytes
B. 8 bytes
C. 16 bytes
D. 32 bytes
E. We’re lost…

26

…
0x0 0x2 0x4 0x6 0x8 0xA 0xC 0xE 0x10

0x1 0x3 0x5 0x7 0x9 0xB 0xD 0xF

0b000…01110

CSE 351, Spring 2024L17: Caches II

Summary: Direct-Mapped Cache

v Hash function:
(block number) mod (# of blocks in cache)
§ Each memory address maps to exactly one

index in the cache
§ Fast (and simpler) to find a block
§ But what about mapping to same index?...

27

Address Block
00 00 XX
00 01 XX
00 10 XX
00 11 XX
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX
10 11 XX
11 00 XX
11 01 XX
11 10 XX
11 11 XX

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L17: Caches II

Direct-Mapped Cache: A Problem!

v What happens if we access the
following addresses?
§ 8, 24, 8, 24, 8, …?
§ Conflict in cache (misses!)
§ Rest of cache goes unused

v Solution? Next time!

28

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Address Block
00 00 XX
00 01 XX
00 10 XX
00 11 XX
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX
10 11 XX
11 00 XX
11 01 XX
11 10 XX
11 11 XX

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

