
CSE 351, Spring 2024L18: Caches III

Memory & Caches III
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE 351, Spring 2024L18: Caches III

Relevant Course Information

v HW 15 due tonight! HW16 due Monday
v HW 17/18 due following Friday (10 May)

§ Covers the major cache mechanics–big homework, start soon!

v Take-home Midterm, May 6th to May 7th

§ 48 hours, but should take 1-3 hours to complete
§ No in-person lecture on Monday the 6th—I will post a new recording instead

v Mid-Course Canvas Survey due May 6th by 11:59 PM
v Lab 3 due Wednesday, May 8th
v Lab 4 releasing soon afterward!

§ Can do Part 1 after today; will need Lecture 19 to do Part 2

2

CSE 351, Spring 2024L18: Caches III

Making memory accesses fast!

v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization

§ Direct-mapped (sets; index + tag)
§ Associativity (ways)
§ Replacement policy
§ Handling writes

v Program optimizations that consider caches

3

CSE 351, Spring 2024L18: Caches III

Reading Review

v Terminology:
§ Associativity: sets, fully-associative cache
§ Replacement policies: least recently used (LRU)
§ Cache line: cache block + management bits (valid, tag)
§ Cache misses: compulsory, conflict, capacity

4

CSE 351, Spring 2024L18: Caches III

Review: Direct-Mapped Cache

5

v Hash function:
(block number) mod (# of blocks in cache)
§ Each memory address maps to exactly one

index in the cache
§ Fast (and simpler) to find a block
§ But what about mapping to same index?...

Address Block
00 00 XX
00 01 XX
00 10 XX
00 11 XX
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX
10 11 XX
11 00 XX
11 01 XX
11 10 XX
11 11 XX

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 4

CSE 351, Spring 2024L18: Caches III

Direct-Mapped: A Problem!

6

v What happens if we access the
following addresses?
§ 8, 24, 8, 24, 8, …?
§ Conflict in cache (misses!)
§ Rest of cache goes unused

v Solution?

Memory Cache
Index Tag Block Data
00 00
01 11
10 ??
11 01

Address Block
00 00 XX
00 01 XX
00 10 XX
00 11 XX
01 00 XX
01 01 XX
01 10 XX
01 11 XX
10 00 XX
10 01 XX
10 10 XX
10 11 XX
11 00 XX
11 01 XX
11 10 XX
11 11 XX

Here 𝐾 = 4 B
and S = 𝐶/𝐾 = 401

00

CSE 351, Spring 2024L18: Caches III

Associativity: A Solution!

v What if we could store any data in any place in the cache? 💡
§ But: requires more complicated hardware ⟹ more power consumed, slower

v Let’s combine the two ideas:
§ Each address maps to exactly one set, but each set can store block in more

than one way in the set!

7

0

1

2

3

Set

2-way:
4 sets,

2 blocks each

0

1

Set

4-way:
2 sets,

4 blocks each
0
1
2
3
4
5
6
7

1-way:
8 sets,

1 block each

direct-mapped

0

Set

8-way:
1 set,

8 blocks

fully associative

CSE 351, Spring 2024L18: Caches III

Cache Organization (3)

v Associativity (𝐸): number of ways to store in each set
§ Such a cache is called an “𝐸-way set associative cache”
§ We now index into cache sets, of which there are S = 𝐶/𝐾/𝐸
§ Use lowest log& 𝐶/𝐾/𝐸 = 𝒔 bits of block address

• Direct-mapped: 𝐸 = 1, so 𝒔 = log! 𝐶/𝐾 as we saw previously
• Fully associative: 𝐸 = 𝐶/𝐾, so 𝒔 = 0 bits

8

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒌)

Note: The textbook
uses “b” for offset bits

CSE 351, Spring 2024L18: Caches III

Example Placement

v Where would data from address 0x1833 be placed?
§ Binary: 0b 0001 1000 0011 0011

9

E	=	1
𝒔 =

block size 𝑲: 16 B
Capacity 𝑪/𝑲: 8 blocks
Address 𝒎: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 𝒌

E	=	2
𝒔 =

E	=	4
𝒔 =

𝒕 = 𝒎–𝒔–𝒌
𝒕

𝒔 = log! 𝐶/𝐾/𝐸
𝒌 = log! 𝐾

CSE 351, Spring 2024L18: Caches III

Block Placement and Replacement
v Any empty block in the correct set may be used to store block

§ Valid bit for each cache block indicates if valid (1) or mystery (0) data

v If there are no empty blocks, which one should we replace? i.e. replacement policy
§ No choice for direct-mapped caches—gotta replace what’s there. Super easy.
§ Otherwise, caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

10

Set V Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set V Tag Data

0

1

2

3

Set V Tag Data

0

1

2-way set associative 4-way set associative

CSE 351, Spring 2024L18: Caches III

Polling Questions

v We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16
E. We’re lost…

v If addresses are 16 bits wide, how wide is the Tag field?

11

CSE 351, Spring 2024L18: Caches III

● ● ●

General Cache Organization (𝑆, 𝐸, 𝐾)

12

𝐸 = blocks (or lines) per set

𝑆 sets
 = 2𝒔

set

line (block plus
management bits)

Cache size:
𝐶 = 𝐾×𝐸×𝑆 data bytes
(doesn’t include V or Tag)

● ● ●

● ● ●

● ● ●

●
●
●

●
●
●

●
●
●

cache

0 1 2 K-1● ● ●TagV

valid bit
𝐾 = bytes per block

CSE 351, Spring 2024L18: Caches III

Notation Review

v We just introduced a lot of new variable names!
§ Please be mindful of block size notation when you look at past exam

questions or are watching videos

13

Parameter Variable Formulas

Block size 𝐾	(𝐵	in	book)

𝑀 = 2𝒎	↔	𝒎 = log"𝑀
𝑆 = 2𝒔	↔	𝒔 = log" 𝑆
𝐾 = 2𝒌	↔	𝒌 = log" 𝐾

𝐶 = 𝐾×𝐸×𝑆
𝒔 = log" 𝐶/𝐾/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒌

Cache size 𝐶
Associativity 𝐸

Number of Sets 𝑆
Address space 𝑀
Address width 𝒎
Tag field width 𝒕

Index field width 𝒔
Offset field width 𝒌	(𝒃	in	book)

CSE 351, Spring 2024L18: Caches III

Example Cache Parameters Problem

v 1 KiB address space, 125 cycles to go to memory.
Fill in the following table:

14

Cache Size 𝑪 64 B
Block Size 𝑲 8 B

Associativity 𝑬 2-way
Hit Time 3 cycles

Miss Rate 20%
Address width (m)

Tag Bits (t)
Index Bits (s)
Offset Bits (k)

AMAT

CSE 351, Spring 2024L18: Caches III

Read: Direct-Mapped Cache (𝐸 = 1)

15

𝒕 bits 0…01 100

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

0 1 2 7TagV 3 654

1) locate set
𝑆 =2𝒔 sets

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

Address of int:
𝒌𝒔

CSE 351, Spring 2024L18: Caches III

Read: Direct-Mapped Cache (𝐸 = 1)

16

0 1 2 7TagV 3 654

match?: yes = hit!2) valid? +

block offset

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100

Address of int:

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

𝒌𝒔

CSE 351, Spring 2024L18: Caches III

Read: Direct-Mapped Cache (𝐸 = 1)

17

𝒕 bits 0…01 100

0 1 2 7TagV 3 654

match?: yes = hit!

3) int (4 B) is here!

No match? Then old line/block gets evicted and replaced!

This is why we
want alignment!

Direct-mapped: One line per set
Block Size 𝐾 = 8 B

block offset

2) valid? +

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

Address of int:
𝒌𝒔

CSE 351, Spring 2024L18: Caches III

Read: Set-Associative Cache (𝐸 = 2)

18

𝒕 bits 0…01 100
Address of short int:

1) locate set

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

0 1 2 7TagV 3 6540 1 2 7TagV 3 654

2-way: Two lines per set
Block Size 𝐾 = 8 B

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

CSE 351, Spring 2024L18: Caches III

19

Read: Set-Associative Cache (𝐸 = 2)

0 1 2 7TagV 3 6540 1 2 7V 3 654

𝒕 bits 0…01 100

2.2) valid? + match: yes = hit!

block offset

Address of short int:

Tag

2.1) compare both

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE 351, Spring 2024L18: Caches III

0 1 2 7TagV 3 6540 1 2 7V 3 654

20

𝒕 bits 0…01 100

2.2) valid? + match: yes = hit!

block offset

3) short int (2 B) is here!

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Address of short int:

Read: Set-Associative Cache (𝐸 = 2)

Tag

2.1) compare both

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

2-way: Two lines per set
Block Size 𝐾 = 8 B

CSE 351, Spring 2024L18: Caches III

Cache Read

21

0 1 2 𝐾-1TagV

𝒔 bits 𝒌 bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

valid bit

𝑆 = # sets
 = 2𝒔

𝐸 = blocks/lines per set

𝐾 = bytes in a block

𝒕 bits

1) Locate set
2) Check if any line in set is valid

and has matching tag: hit!
3) Locate data starting at offset

CSE 351, Spring 2024L18: Caches III

Types of Cache Misses: 3 C’s!
v Compulsory (cold) miss

§ Occurs on first access to a block

v Conflict miss
§ Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot
• e.g., referencing blocks 0, 8, 0, 8, ... could miss every time

§ Direct-mapped caches have more conflict misses than
𝐸-way set-associative (where 𝐸 > 1)

v Capacity miss
§ Occurs when the set of active cache blocks (the working set) is larger than

the cache (just won’t fit, even if cache was fully-associative)
§ Note: Fully-associative only has Compulsory and Capacity misses

22

