Memory & Caches IV

CSE 351 Spring 2024

Instructor:

Elba Garza

Teaching Assistants:

Ellis Haker

Adithi Raghavan

Aman Mohammed

Brenden Page

Celestine Buendia

Chloe Fong

Claire Wang

Hamsa Shankar

Maggie Jiang

Malak Zaki

Naama Amiel

Nikolas McNamee

Shananda Dokka

Stephen Ying

Will Robertson

The cache when you ask for something that was just evicted:

Playlist: CSE 351 24Sp Lecture Tunes!

Announcements, Reminders

- Happy Midterm madness!
- Mid-Quarter Survey on Canvas due tonight!
- * HW 16 also due tonight! HW 17/18 due Friday (10 May).
- Lab 3 due Wednesday by 11:59 PM
- Lab 4 releasing on Wednesday-ish.
 - HW 19 helps you prepare for Lab 4

Reading Review

- Terminology:
 - Write-hit policies: write-back, write-through
 - Write-miss policies: write allocate, no-write allocate
 - Cache blocking

What about writes? (Review)

- Multiple copies of data may exist:
 - multiple levels of cache and main memory
- What to do on a write-hit (data <u>already in cache</u>)?
 - Write-through: write immediately to next level
 - Write-back: defer write to next level until line is evicted (replaced)
 - Must track which cache lines have been modified (using the "dirty bit")
- What to do on a write-miss (data <u>not in cache</u>)?
 - Write allocate: ("fetch on write") load into cache, then execute the write-hit policy

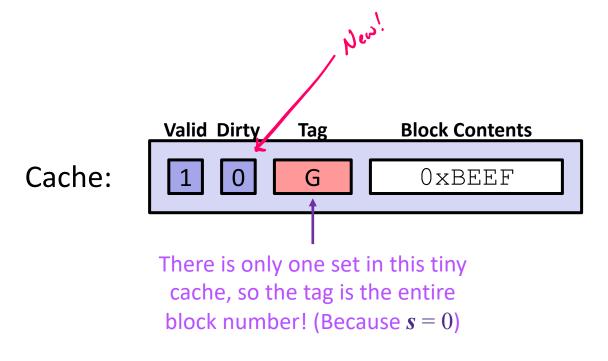
L19: Caches IV

- Good if more writes or reads to the location follow
- No-write allocate: ("write around") just write immediately to next level
- Typical caches:
 - Write-back + Write allocate, usually
 - Write-through + No-write allocate, occasionally

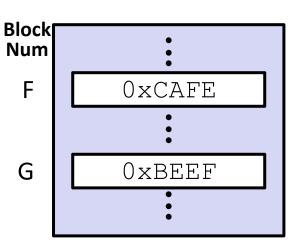
Write-back: defer write to next level until line is evicted

Write-allocate: on a miss, bring

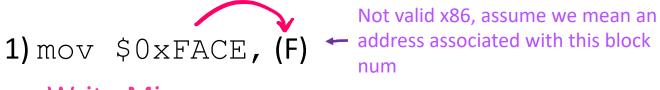
the data into cache



Memory:



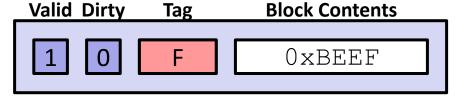
<u>Note</u>: We are making some unrealistic simplifications to keep this example simple and focus on the cache policies!



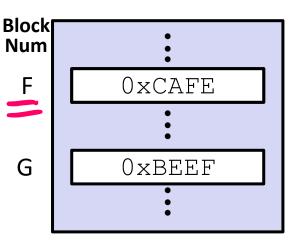
Write-back: defer write to next level until line is evicted Write-allocate: on a miss, bring the data into cache

Write Miss

Cache:



Memory:

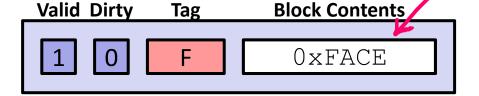


Step 1: Bring **F** into cache

1) mov \$0xFACE, (F)

Write Miss

Cache:



Step 1: Bring F into

cache

Step 2: Write

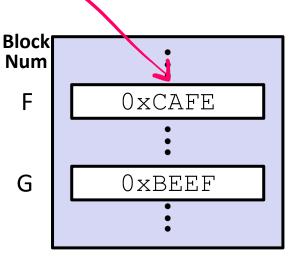
0xFACE to cache

only and set the

dirty bit. Why? Look

at the values!

Memory:



Write-back: defer write to next

Write-allocate: on a miss, bring

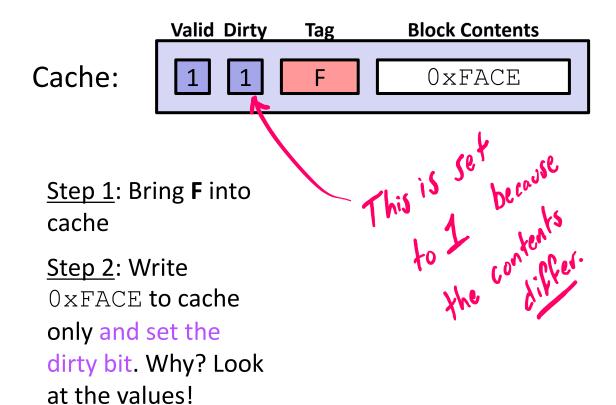
level until line is evicted

the data into cache

1) mov \$0xFACE, (F)

Write Miss

Write-back: defer write to next level until line is evicted
Write-allocate: on a miss, bring the data into cache



Memory:

F

OxCAFE

OxBEEF

i

1) mov \$0xFACE, (F) 2) mov \$0xFEED, (F)
Write Miss Write Hit

Write-back: defer write to next level until line is evicted
Write-allocate: on a miss, bring the data into cache

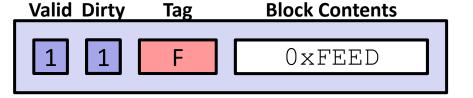
Cache:

Step: Write

dirty bit)

0xFEED to cache

only (and set the

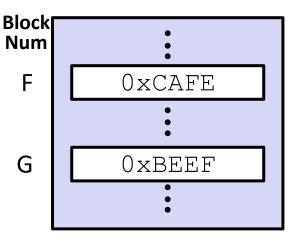


- Redundant? Ues,

but just do it.

protocol!

Memory:



L19: Caches IV

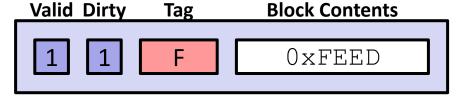
Write-back, Write Allocate Example

Write-back: defer write to next level until line is evicted Write-allocate: on a miss, bring the data into cache

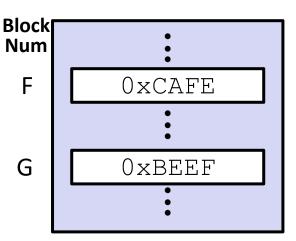
1) mov \$0xFACE, (F) 2) mov \$0xFEED, (F) 3) mov (G), %ax Write Miss Write Hit

Read Miss

Cache:



Memory:



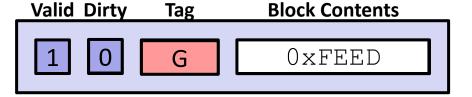
Step 1: Write **F** back to memory since it is dirty

Write-back: defer write to next level until line is evicted Write-allocate: on a miss, bring the data into cache

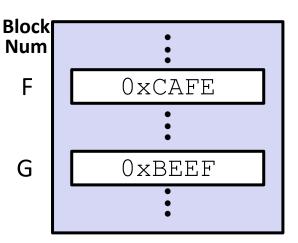
1) mov \$0xFACE, (F) 2) mov \$0xFEED, (F) 3) mov (G), %ax Write Miss Write Hit

Read Miss

Cache:



Memory:



Step 1: Write **F** back to memory since it is dirty

Step 2: Bring **G** into the cache so that we can copy it into %ax

Cache Simulator

- Want to play around with cache parameters and policies? Check out our cache simulator!
 - https://courses.cs.washington.edu/courses/cse351/cachesim/

Way to use:

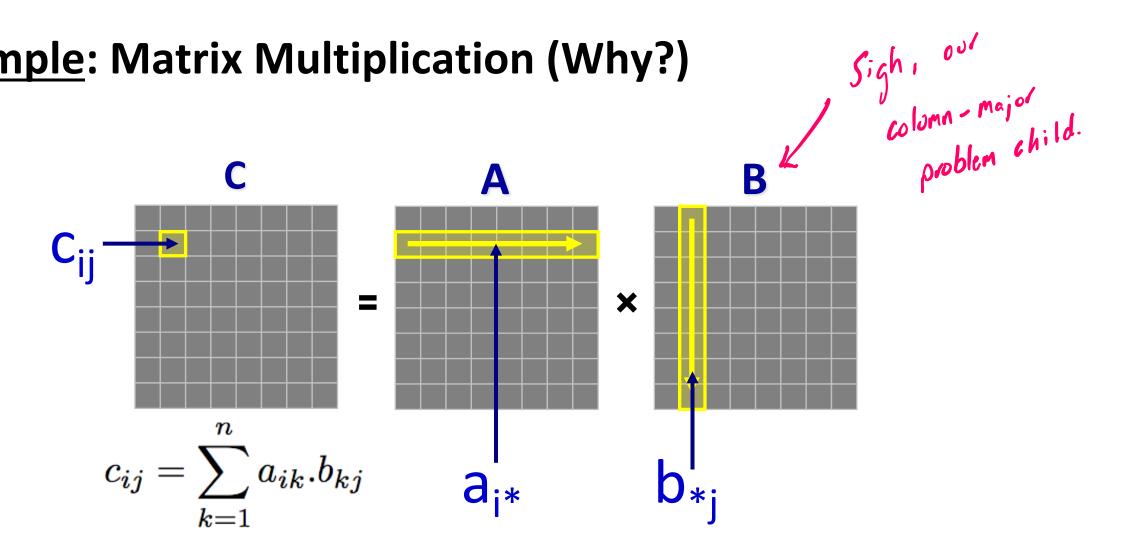
- Take advantage of "explain mode" and navigable history to test your own hypotheses and answer your own questions
- Self-guided Cache Sim Demo posted along with Section 7
- Will be used in HW19 Lab 4 Preparation

Polling Question

- Which of the following cache statements is FALSE?
 - A. A write-through cache will always match data with the memory hierarchy level below it
 - B. We can reduce compulsory misses by decreasing our block size
 - C. A write-back cache will save time for code with good temporal locality on writes
 - D. We can reduce conflict misses by increasing associativity
 - E. We're lost...

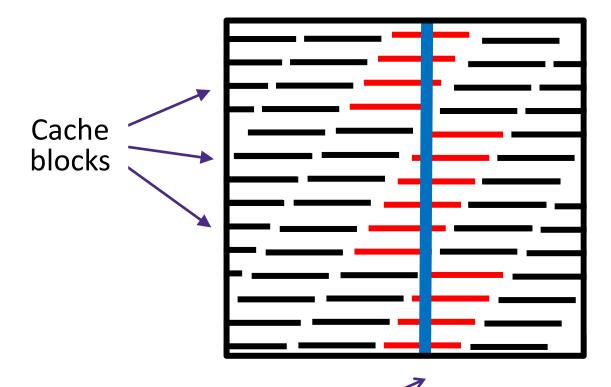
Optimizations for the Memory Hierarchy

- Write code that has locality!
 - Spatial: access data contiguously
 - Temporal: make sure access to the same data is not too far apart in time
- * How can you achieve locality?
 - Adjust memory accesses in code (software) to improve miss rate (MR)
 - Requires knowledge of both how caches work as well as your system's parameters
 - Proper choice of algorithm
 - Loop transformations



Matrices in Memory

- How do cache blocks fit into this scheme?
 - Row major matrix in memory:



A cand this why.

column of matrix (blue) is spread among cache blocks shown in red

Naïve Matrix Multiply

```
# move along rows of A
for (i = 0; i < n; i++)
# move along columns of B
for (j = 0; j < n; j++)
# EACH k loop reads row of A, col of B
# Also read & write c(i,j) n times
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n+k] * b[k*n+j];</pre>
```

Something to think about: How many memory accesses in this line?

4

$$\begin{bmatrix} C(i,j) \\ 1 \end{bmatrix} = \begin{bmatrix} C(i,j) \\ 2 \end{bmatrix} + \begin{bmatrix} A(i,:) \\ 3 \end{bmatrix} \times \begin{bmatrix} B(:,j) \\ 4 \end{bmatrix}$$

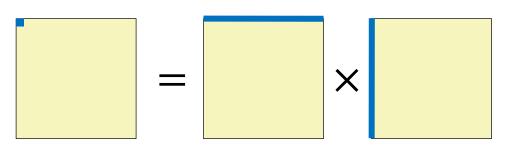
CSE 351, Spring 2024

Cache Miss Analysis (Naïve)

- Scenario Parameters:
 - Square matrix $(n \times n)$, elements are doubles
 - Cache block size K = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)

Each iteration:

$$\frac{n}{8} + n = \frac{9n}{8}$$
 misses



Cache Miss Analysis (Naïve)

Scenario Parameters:

 $oldsymbol{W}$ university of washington

- Square matrix $(n \times n)$, elements are doubles
- Cache block size K = 64 B = 8 doubles
- Cache size $C \ll n$ (much smaller than n)

Each iteration:

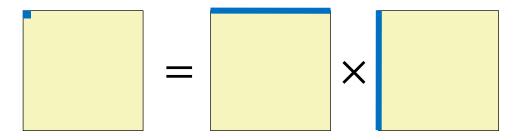
Afterwards in cache: (schematic)

Cache Miss Analysis (Naïve)

- Scenario Parameters:
 - Square matrix $(n \times n)$, elements are doubles
 - Cache block size K = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)

Each iteration:

$$\frac{n}{8} + n = \frac{9n}{8}$$
 misses



* Total misses:
$$\frac{9n}{8} \times n^2 = \frac{9}{8}n^3$$

Linear Algebra to the Rescue (1)

- Can get the same result of a matrix multiplication by splitting the matrices into smaller submatrices (matrix "blocks")
- For example, multiply two 4×4 matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ with } B \text{ defined similarly.}$$

$$AB = \begin{bmatrix} (A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\ (A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22}) \end{bmatrix}$$

Linear Algebra to the Rescue (2)

C ₁₁	C ₁₂	C ₁₃	C ₁₄
C ₂₁	C ₂₂	C ₂₃	C ₂₄
C ₃₁	C ₃₂	C ₄₃	C ₃₄
C ₄₁	C ₄₂	C ₄₃	C ₄₄

A ₁₁	A ₁₂	A ₁₃	A ₁₄
A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₁	A ₃₂	A ₃₃	A ₃₄
A ₄₁	A ₄₂	A ₄₃	A ₁₄₄

\longleftrightarrow					
B ₁₁	B ₁₂	B ₁₃	B ₁₄		
B ₂₁	B ₂₂	B ₂₃	B ₂₄		
B ₃₂	B ₃₂	B ₃₃	B ₃₄		
B ₄₁	B ₄₂	B ₄₃	B ₄₄		

Matrices of size $n \times n$, split into 4 blocks of size r (n=4r)

$$C_{22} = A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} + A_{24}B_{42} = \sum_{k} A_{2k} B_{k2}$$

Multiplication operates on small "block" matrices

- Choose size so that they fit in the cache!
- This technique called "cache blocking"

Blocked Matrix Multiply

Blocked version of the naïve algorithm (wtf???):

```
# move by rxr BLOCKS now
for (i = 0; i < n; i += r)
  for (j = 0; j < n; j += r)
    for (k = 0; k < n; k += r)
        # block matrix multiplication
    for (ib = i; ib < i+r; ib++)
        for (jb = j; jb < j+r; jb++)
        for (kb = k; kb < k+r; kb++)
        c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];</pre>
```

ho = block matrix size (assume r divides n evenly)

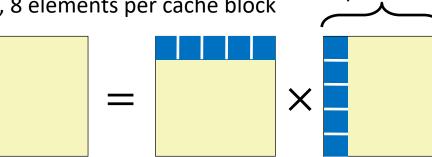
Cache Miss Analysis (Blocked)

- Scenario Parameters:
 - Cache block size K = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks $(r \times r)$ fit into cache: $3r^2 < C$

 r^2 elements per sub-matrix, 8 elements per cache block

$$\frac{2n}{r} \times \frac{r^2}{8} = \frac{nr}{4}$$

n/r blocks in row and in column



n/r blocks

Cache Miss Analysis (Blocked)

Ignoring matrix c

- Scenario Parameters:
 - Cache block size K = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks $(r \times r)$ fit into cache: $3r^2 < C$

n/r blocks in row and in column

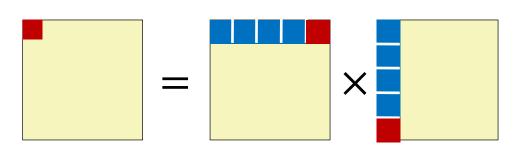
* Each block iteration:

• r^2 elements per sub-matrix, 8 elements per cache block

• r^2 /8 misses per block

• $2n/r \times r^2/8 = nr/4$

Afterwards in cache (schematic)



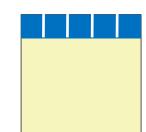
Cache Miss Analysis (Blocked)

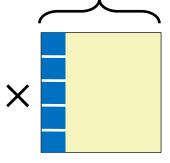
- Scenario Parameters:
 - Cache block size K = 64 B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks $(r \times r)$ fit into cache: $3r^2 < C$

 r^2 elements per block, 8 per cache block

n/r blocks in row and column

- $r^2/8$ misses per block
- $2n/r \times r^2/8 = nr/4$





n/r blocks

Total misses: __number of

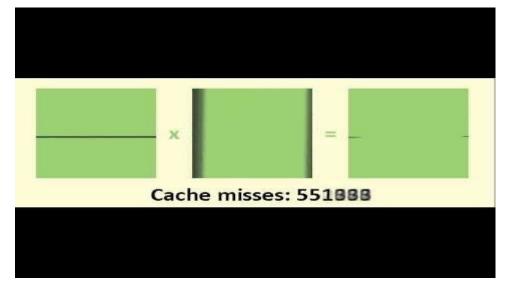
number of blocks in product matrix

$$\frac{nr}{4} \times \left(\frac{n}{r}\right)^2 = \frac{n^3}{4r}$$

Compare this to
$$\frac{9}{8}n^3$$
 !!!

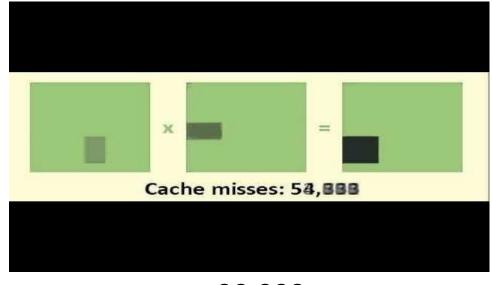
Matrix Multiply Visualization

Naïve:



≈ 1,020,000 cache misses

Blocked:



≈ 90,000 cache misses

Here
$$n = 100$$
, $C = 32$ KiB, $r = 30$

L19: Caches IV

Cache-Friendly Code

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique
- All systems favor "cache-friendly code"
 - Getting absolute optimum performance is very platform specific
 - Cache size, cache block size, associativity, etc.
 - Can get most of the advantage with generic coding rules
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)
 - Focus on inner loop code