
CSE351, Spring 2024L20: Memory Allocation I

Memory Allocation I
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE351, Spring 2024L20: Memory Allocation I

Announcements, Reminders

v Lab 3 due & Lab 4 releasing tonight
v HW17/18 due Friday, HW19 due Monday (13 May)
v Midterm due last night!

§ How’d it go?
§ Expect grades in a week-ish, more or less...

v Looking ahead: Guest lectures on May 15th and 17th

2

CSE351, Spring 2024L20: Memory Allocation I

Current Events & CSE 351

v There may be interruptions to course resources:
§ Office Hours
§ Section
§ Grading

v Please bear with us as information comes in and the situation develops…

3

CSE351, Spring 2024L20: Memory Allocation I

v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory,

Memory Allocation

v How do we maintain logical consistency in the face of more data and
more processes?
§ How do we support control flow both within many processes and things external to

the computer?
§ How do we support data access, including dynamic requests, across multiple

processes?

The Hardware/Software Interface

4

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

⋮

CSE351, Spring 2024L20: Memory Allocation I

Reading Review

v Terminology:
§ Dynamically-allocated data: malloc, free
§ Allocators: implicit vs. explicit allocators, heap blocks, implicit vs. explicit free lists
§ Heap fragmentation: internal vs. external

5

CSE351, Spring 2024L20: Memory Allocation I

Multiple Ways to Store Program Data
v Static global data

§ Fixed size at compile-time
§ Entire lifetime of the program

(loaded from executable)
§ Accessible anywhere in program
§ A portion is read-only (e.g., string literals)

v Stack-allocated data
§ Local/temporary variables

• Can be dynamically sized (in some versions of C)

§ Known lifetime (deallocated on return)

v Dynamic (heap) data
§ Size known only at runtime (e.g., based on user-input)
§ Lifetime known only at runtime due to control by programmer (e.g., malloc/free in C)

6

int array[1024];

void foo(int n) {
 int tmp;
 int local_array[n];

 int* dyn =
 (int*)malloc(n*sizeof(int));
}

CSE351, Spring 2024L20: Memory Allocation I

Memory Allocation

v Dynamic memory allocation
§ Introduction and goals
§ Allocation and deallocation (free)
§ Fragmentation

v Explicit allocation implementation
§ Implicit free lists
§ Explicit free lists (Lab 5)
§ Segregated free lists

v Implicit deallocation: garbage collection
v Common memory-related bugs in C

7

CSE351, Spring 2024L20: Memory Allocation I

Dynamic Memory Allocation (Review)

v Programmers use dynamic memory allocators to
acquire virtual memory at run time
§ For data structures whose size (or lifetime) is known

only at runtime
§ Manage the heap of a process’ virtual memory:

v Types of allocators
§ Explicit allocator: programmer allocates and frees space

• Example: malloc and free in C

§ Implicit allocator: programmer only needs to allocate space (no free)
• Example: use new, and garbage collection is done for you in Java, Ruby,

and Python

8

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Spring 2024L20: Memory Allocation I

Dynamic Memory Allocation

v Allocator organizes heap as a collection
of variable-sized blocks, which are either
allocated or free

v What happens if we run out of heap
space?
§ Ask the OS for more memory and increment
brk!

9

Top of
heap
(brk ptr)

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

bottom of
stack
 (%rsp)

CSE351, Spring 2024L20: Memory Allocation I

Allocating Memory in C (Review)
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ size_t?! Simple typedef for an unsigned 8-byte integer
§ Returns a pointer to the beginning of the allocated block; NULL if request failed

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Best practices:
§ ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable (ints aren’t the same size in all machines…)
• void* is implicitly cast into any pointer type; explicit typecast will help you catch coding errors when

pointer types don’t match

10

CSE351, Spring 2024L20: Memory Allocation I

Allocating Memory in C (Review)
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ size_t?! Simple typedef for an unsigned 8-byte integer
§ Returns a pointer to the beginning of the allocated block; NULL if request failed

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Related functions:
§ void* calloc(size_t nitems, size_t size)

“Zeros out” allocated block
§ void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)
§ void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
11

CSE351, Spring 2024L20: Memory Allocation I

Freeing Memory in C (Review)
v Need to #include <stdlib.h>
v void free(void* p)

§ Releases whole block pointed to by p back to the pool of available memory
§ Pointer p must be the address originally returned by (m|c|re)alloc

(i.e., beginning of the block), otherwise system exception raised
§ Don’t call free on a block that has already been released!
§ No action occurs if you call free(NULL)

12

CSE351, Spring 2024L20: Memory Allocation I

Memory Allocation Example in C

13

void foo(int n, int m) {
 int i, *p;
 p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints for an array*/
 if (p == NULL) { /* check for allocation error */
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++) /* initialize int array */
 p[i] = i;

 p = (int*) realloc(p,(n+m)*sizeof(int)); /* add space for m ints to end of p block */
 if (p == NULL) { /* check for allocation error */
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++) /* initialize new spaces only */
 p[i] = i;
 for (i=0; i<n+m; i++) /* print new array */
 printf("%d\n", p[i]);
 free(p); /* free p */
 p = NULL; /* good practice to set p to NULL after free*/
}

CSE351, Spring 2024L20: Memory Allocation I

Notation

v We will draw memory divided into words
§ Each word is 64 bits = 8 bytes
§ Allocations will be in sizes that are a multiple of words

(i.e., multiples of 8 bytes)
§ Note: Book and old videos still use 4-byte word

• Holdover from 32-bit version of textbook 🙁

14

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351, Spring 2024L20: Memory Allocation I

Allocation Example

15

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351, Spring 2024L20: Memory Allocation I

Implementation Interface (Review)

v Applications
§ Can issue arbitrary sequence of malloc and free requests
§ Must never access memory not currently allocated
§ Must never free memory not currently allocated

• Also must only use free with previously malloc’ed blocks

v Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc
§ Must allocate blocks from free memory
§ Must align blocks so they satisfy all alignment requirements
§ Can’t move the allocated blocks

16

CSE351, Spring 2024L20: Memory Allocation I

Performance Goals (Review)

v Goals: Given some sequence of malloc and free requests
𝑅!, 𝑅", … , 𝑅# , … , 𝑅$%", maximize throughput and peak memory
utilization
§ These goals are often conflicting…

1) Throughput
§ Number of completed requests per unit time
§ Example:

• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then
throughput is 1,000 operations/second

17

CSE351, Spring 2024L20: Memory Allocation I

Performance Goals

v Definition: Aggregate payload 𝑃#
§ malloc(p) results in a block with a payload of p bytes
§ After request 𝑅! has completed, the aggregate payload 𝑃! is the sum of currently

allocated payloads

v Definition: Current heap size 𝐻#
§ Assume 𝐻! is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
§ Defined as 𝑈! = (max

"#!
𝑃")/𝐻! after 𝑘+1 requests

§ Goal: maximize utilization for a sequence of requests
§ Why is this hard? And what happens to throughput?

18

CSE351, Spring 2024L20: Memory Allocation I

Fragmentation (Review)

v Poor memory utilization is caused by fragmentation
§ Sections of memory are not used to store anything useful, but cannot satisfy

allocation requests
§ Two types: internal and external

v Recall: Fragmentation in structs
§ Internal fragmentation was wasted space inside of the struct (between fields) due

to alignment
§ External fragmentation was wasted space between struct instances (e.g., in an

array) due to alignment

v Now referring to wasted space in the heap inside or between allocated
blocks

19

CSE351, Spring 2024L20: Memory Allocation I

Internal Fragmentation

v For a given block, internal fragmentation occurs if payload is smaller
than the block

v Causes:
§ Padding for alignment purposes
§ Overhead of maintaining heap data structures (inside block, outside payload)
§ Explicit policy decisions (e.g., return a big block to satisfy a small request)

v Easy to measure because only depends on past requests

20

payload Internal
fragmentation

block

Internal
fragmentation

CSE351, Spring 2024L20: Memory Allocation I

External Fragmentation
v For the heap, external fragmentation occurs when allocation/free pattern leaves

“holes” between blocks
§ That is, the aggregate payload is non-continuous
§ Can cause situations where there is enough aggregate heap memory to satisfy request, but no

single free block is large enough

v Don’t know what future requests will be
§ Difficult to impossible to know if past placements will become problematic

21

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351, Spring 2024L20: Memory Allocation I

Polling Question

v Which of the following statements is FALSE?
A. Temporary arrays should not be allocated on the Heap
B. malloc returns an address of a block that is filled with mystery

data
C. Peak memory utilization is a measure of both internal and external

fragmentation
D. An allocation failure will cause your program to stop
E. We’re lost…

22

CSE351, Spring 2024L20: Memory Allocation I

Implementation Issues

v How do we know how much memory to free given just a pointer?
v How do we keep track of the free blocks?
v How do we pick a block to use for allocation (when many might fit)?
v What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
v How do we reinsert a freed block into the heap?

23

CSE351, Spring 2024L20: Memory Allocation I

Implementation Issues

v How do we know how much memory to free given just a pointer?
v How do we keep track of the free blocks?
v How do we pick a block to use for allocation (when many might fit)?
v What do we do with the extra space when allocating a structure that is

smaller than the free block it is placed in?
v How do we reinsert a freed block into the heap?

24

CSE351, Spring 2024L20: Memory Allocation I

Knowing How Much to Free

v Standard method
§ Keep the length of a block in the word preceding the data

• This word is often called the header field or just, header

§ Requires an extra word for every allocated block

25

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2024L20: Memory Allocation I

Keeping Track of Free Blocks
1) Implicit free list using length – links all blocks using math

§ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
§ Different free lists for different size “classes”

4) Blocks sorted by size
§ Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
26

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

Lab 5 funness!

Out of scope
of 351

CSE351, Spring 2024L20: Memory Allocation I

Implicit Free Lists
v For each block we need: size, is-allocated?

§ Could store using two words, but kinda wasteful…

v Standard trick
§ If blocks are aligned, some low-order bits of size are always 0
§ Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)
§ When reading size, must remember to mask out this bit! Don’t forget!

27

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g., with 8-byte alignment,
possible values for size:
 00001000 = 8 bytes
 00010000 = 16 bytes
 00011000 = 24 bytes
 . . .

If x is the header:

x = size | a;

a = x & 1;

size = x & ~1;

 size | a;

 x & 1;

 x & ~1;

CSE351, Spring 2024L20: Memory Allocation I

Header Questions

v How many “flags” can we fit in our header if our allocator uses 16-byte
alignment?

v If we placed a new “flag” in the second least significant bit, write out a C
expression that will extract this new flag from the header!

28

