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Announcements, Reminders

v Lab 3 due & Lab 4 releasing tonight
v HW17/18 due Friday, HW19 due Monday (13 May)
v Midterm due last night!

§ How’d it go?
§ Expect grades in a week-ish, more or less...

v Looking ahead: Guest lectures on May 15th and 17th
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Current Events & CSE 351

v There may be interruptions to course resources:
§ Office Hours
§ Section
§ Grading

v Please bear with us as information comes in and the situation develops…
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v Topic Group 3: Scale & Coherence
§ Caches, Processes, Virtual Memory, 

Memory Allocation

v How do we maintain logical consistency in the face of more data and 
more processes?
§ How do we support control flow both within many processes and things external to 

the computer?
§ How do we support data access, including dynamic requests, across multiple 

processes?

The Hardware/Software Interface
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Reading Review

v Terminology:
§ Dynamically-allocated data: malloc, free
§ Allocators:  implicit vs. explicit allocators, heap blocks, implicit vs. explicit free lists
§ Heap fragmentation:  internal vs. external
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Multiple Ways to Store Program Data
v Static global data

§ Fixed size at compile-time
§ Entire lifetime of the program 

(loaded from executable)
§ Accessible anywhere in program
§ A portion is read-only (e.g., string literals)

v Stack-allocated data
§ Local/temporary variables

• Can be dynamically sized (in some versions of C)

§ Known lifetime (deallocated on return)

v Dynamic (heap) data
§ Size known only at runtime (e.g.,  based on user-input)
§ Lifetime known only at runtime due to control by programmer (e.g., malloc/free in C)
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int array[1024];

void foo(int n) {
  int tmp;
  int local_array[n];
  
  int* dyn = 
    (int*)malloc(n*sizeof(int));
}
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Memory Allocation

v Dynamic memory allocation
§ Introduction and goals
§ Allocation and deallocation (free)
§ Fragmentation

v Explicit allocation implementation
§ Implicit free lists
§ Explicit free lists (Lab 5)
§ Segregated free lists

v Implicit deallocation:  garbage collection
v Common memory-related bugs in C
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Dynamic Memory Allocation (Review)

v Programmers use dynamic memory allocators to 
acquire virtual memory at run time 
§ For data structures whose size (or lifetime) is known 

only at runtime
§ Manage the heap of a process’ virtual memory:

v Types of allocators
§ Explicit allocator: programmer allocates and frees space 

• Example:  malloc and free in C

§ Implicit allocator:  programmer only needs to allocate space (no free)
• Example:  use new, and garbage collection is done for you in Java, Ruby, 

and Python
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Dynamic Memory Allocation

v Allocator organizes heap as a collection 
of variable-sized blocks, which are either 
allocated or free

v What happens if we run out of heap 
space? 
§ Ask the OS for more memory and increment 
brk!
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Allocating Memory in C (Review)
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ size_t?! Simple typedef for an unsigned 8-byte integer 
§ Returns a pointer to the beginning of the allocated block; NULL if request failed

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Best practices:
§ ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable (ints aren’t the same size in all machines…)
• void* is implicitly cast into any pointer type; explicit typecast will help you catch coding errors when 

pointer types don’t match
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Allocating Memory in C (Review)
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ size_t?! Simple typedef for an unsigned 8-byte integer 
§ Returns a pointer to the beginning of the allocated block; NULL if request failed

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Related functions:
§ void* calloc(size_t nitems, size_t size)

“Zeros out” allocated block
§ void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)
§ void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
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Freeing Memory in C (Review)
v Need to #include <stdlib.h>
v void free(void* p)

§ Releases whole block pointed to by p back to the pool of available memory
§ Pointer p must be the address originally returned by (m|c|re)alloc 

(i.e., beginning of the block), otherwise system exception raised
§ Don’t call free on a block that has already been released!
§ No action occurs if you call free(NULL)
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Memory Allocation Example in C
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void foo(int n, int m) {
  int i, *p;
  p = (int*) malloc(n*sizeof(int));       /* allocate block of n ints for an array*/
  if (p == NULL) {                        /* check for allocation error */
    perror("malloc");
    exit(0);
  }
  for (i=0; i<n; i++)                     /* initialize int array */
    p[i] = i;
  
  p = (int*) realloc(p,(n+m)*sizeof(int));    /* add space for m ints to end of p block */
  if (p == NULL) {                            /* check for allocation error */
    perror("realloc");
    exit(0);
  }
  for (i=n; i < n+m; i++)                     /* initialize new spaces only */
    p[i] = i;
  for (i=0; i<n+m; i++)                   /* print new array */ 
    printf("%d\n", p[i]);
  free(p);                                /* free p */
  p = NULL;                                   /* good practice to set p to NULL after free*/
}
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Notation

v We will draw memory divided into words
§ Each word is 64 bits = 8 bytes
§ Allocations will be in sizes that are a multiple of words

(i.e., multiples of 8 bytes)
§ Note: Book and old videos still use 4-byte word

• Holdover from 32-bit version of textbook 🙁
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Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes
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Allocation Example
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p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word
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Implementation Interface (Review)

v Applications
§ Can issue arbitrary sequence of malloc and free requests
§ Must never access memory not currently allocated 
§ Must never free memory not currently allocated

• Also must only use free with previously malloc’ed blocks

v Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc
§ Must allocate blocks from free memory
§ Must align blocks so they satisfy all alignment requirements
§ Can’t move the allocated blocks
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Performance Goals (Review)

v Goals:  Given some sequence of malloc and free requests 
𝑅!, 𝑅", … , 𝑅# , … , 𝑅$%", maximize throughput and peak memory 
utilization
§ These goals are often conflicting…

1) Throughput
§ Number of completed requests per unit time
§ Example:

• If 5,000  malloc calls and 5,000 free calls completed in 10 seconds, then 
throughput is 1,000 operations/second
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Performance Goals

v Definition:  Aggregate payload 𝑃#
§ malloc(p) results in a block with a payload of p bytes
§ After request 𝑅!  has completed, the aggregate payload 𝑃!   is the sum of currently 

allocated payloads

v Definition:  Current heap size 𝐻#
§ Assume 𝐻! is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
§ Defined as 𝑈! = (max

"#!
𝑃")/𝐻! after 𝑘+1 requests

§ Goal: maximize utilization for a sequence of requests
§ Why is this hard?  And what happens to throughput?
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Fragmentation (Review)

v Poor memory utilization is caused by fragmentation
§ Sections of memory are not used to store anything useful, but cannot satisfy 

allocation requests
§ Two types:  internal and external

v Recall:  Fragmentation in structs
§ Internal fragmentation was wasted space inside of the struct (between fields) due 

to alignment
§ External fragmentation was wasted space between struct instances (e.g., in an 

array) due to alignment

v Now referring to wasted space in the heap inside or between allocated 
blocks
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Internal Fragmentation

v For a given block, internal fragmentation occurs if payload is smaller 
than the block

v Causes:
§ Padding for alignment purposes
§ Overhead of maintaining heap data structures (inside block, outside payload)
§ Explicit policy decisions (e.g., return a big block to satisfy a small request)

v Easy to measure because only depends on past requests
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payload Internal 
fragmentation

block

Internal 
fragmentation
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External Fragmentation
v For the heap, external fragmentation occurs when allocation/free pattern leaves 

“holes” between blocks
§ That is, the aggregate payload is non-continuous
§ Can cause situations where there is enough aggregate heap memory to satisfy request, but no 

single free block is large enough

v Don’t know what future requests will be
§ Difficult to impossible to know if past placements will become problematic
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p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word
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Polling Question

v Which of the following statements is FALSE?
A. Temporary arrays should not be allocated on the Heap
B. malloc returns an address of a block that is filled with mystery 

data
C. Peak memory utilization is a measure of both internal and external 

fragmentation
D. An allocation failure will cause your program to stop
E. We’re lost…
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Implementation Issues

v How do we know how much memory to free given just a pointer?
v How do we keep track of the free blocks?
v How do we pick a block to use for allocation (when many might fit)?
v What do we do with the extra space when allocating a structure that is 

smaller than the free block it is placed in?
v How do we reinsert a freed block into the heap?
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Implementation Issues

v How do we know how much memory to free given just a pointer?
v How do we keep track of the free blocks?
v How do we pick a block to use for allocation (when many might fit)?
v What do we do with the extra space when allocating a structure that is 

smaller than the free block it is placed in?
v How do we reinsert a freed block into the heap?
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Knowing How Much to Free

v Standard method
§ Keep the length of a block in the word preceding the data

• This word is often called the header field or just, header

§ Requires an extra word for every allocated block
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free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)
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Keeping Track of Free Blocks
1)  Implicit free list using length – links all blocks using math

§ No actual pointers, and must check each block if allocated or free

2)  Explicit free list among only the free blocks, using pointers

3)  Segregated free list
§ Different free lists for different size “classes”

4)  Blocks sorted by size
§ Can use a balanced binary tree (e.g., red-black tree) with pointers within 

each free block, and the length used as a key
26

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

Lab 5 funness!

Out of scope 
of 351



CSE351, Spring 2024L20:  Memory Allocation I

Implicit Free Lists
v For each block we need:  size, is-allocated? 

§ Could store using two words, but kinda wasteful…

v Standard trick
§ If blocks are aligned, some low-order bits of size are always 0
§ Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)
§ When reading size, must remember to mask out this bit! Don’t forget!
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Format of 
allocated and 

free blocks:

a = 1:  allocated block  
a = 0:  free block

size:  block size (in bytes)

payload:  application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g., with 8-byte alignment, 
possible values for size:
    00001000 = 8 bytes
    00010000 = 16 bytes
    00011000 = 24 bytes
    . . .

If x is the header:
 
x = size | a;

a = x & 1;

size = x & ~1;

    size | a;

    x & 1;

       x & ~1;
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Header Questions

v How many “flags” can we fit in our header if our allocator uses 16-byte 
alignment?

v If we placed a new “flag” in the second least significant bit, write out a C 
expression that will extract this new flag from the header!
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