CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON

Memory Allocation |
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:

Ellis Haker

Adithi Raghavan
Aman Mohammed
Brenden Page
Celestine Buendia
Chloe Fong

Claire Wang
Hamsa Shankar

L20: Memory Allocation |

Maggie Jiang
Malak Zaki
Naama Amiel
Nikolas McNamee
Shananda Dokka
Stephen Ying

Will Robertson

When you try to
malloc in Java

"We don't do that here"

-

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Announcements, Reminders

+» Lab 3 due & Lab 4 releasing tonight

+» HW17/18 due Friday, HW19 due Monday (13 May)
+» Midterm due last night!

= How'd it go?

= Expect grades in a week-ish, more or less...

+» Looking ahead: Guest lectures on May 15t and 17th

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Current Events & CSE 351

+» There may be interruptions to course resources:

= Office Hours
= Section
= Grading

+ Please bear with us as information comes in and the situation develops...

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

The Hardware/Software Interface

+ Topic Group 3: Scale & Coherence

= Caches, Processes, Virtual Memory,
Memory Allocation

CSE351, Spring 2024

/\

Even more applications

Applications

Programming Languages
& Libraries

Operating System

| Hardware I

Transistors, Gates, Digital Systems

Physics

+» How do we maintain logical consistency in the face of more data and

more processes?

= How do we support control flow both within many processes and things external to

the computer?

= How do we support data access, including dynamic requests, across multiple

processes?

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Reading Review

+» Terminology:
= Dynamically-allocated data: malloc, free
= Allocators: implicit vs. explicit allocators, heap blocks, implicit vs. explicit free lists

= Heap fragmentation: internal vs. external

WA/ UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Multiple Ways to Store Program Data

+ Static global data —

" Fixed size at compile-time

(loaded from executable)

= Accessible anywhere in program
= A portion is read-only (e.g., string literals)

+ Stack-allocated data _

" Local/temporary variables

« Can be dynamically sized (in some versions of C)

o (deallocated on return)

<+ Dynamic (heap) data

= Size known only at runtime (e.g., based on user-input)

CSE351, Spring 2024

\int array[1024];

void foo (int n) {

~ int tmp;

int local arrayl[n];
b

int* dyn =

} A

(int*)malloc (n*sizeof (int)) ;

due to control by programmer (e.g., malloc/freein C)

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Memory Allocation

+» Dynamic memory allocation

*

" Introduction and goals
= Allocation and deallocation (free)

" Fragmentation

Explicit allocation implementation

L)

0‘0

= Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

Implicit deallocation: garbage collection

L)

0‘0

L)

*

Common memory-related bugs in C

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Dynamic Memory Allocation (Review)

User stack
% Programmers use dynamic memory allocators to
acquire virtual memory at run time I
" For data structures whose size (or lifetime) is known

only at runtime
Heap (viamalloc)

" Manage the heap of a process’ virtual memory:

& Types Of a”ocators Uninitialized data (.bss)

= Explicit allocator: programmer allocates and frees space

_ Initialized data (. data)
- Example: mallocand freeinC

= Implicit allocator: programmer only needs to allocate space (no free) Program text (. text)

- Example: use new, and garbage collection is done for you in Java, Ruby,
and Python

WA/ UNIVERSITY of WASHINGTON

Dynamic Memory Allocation

Allocator organizes heap as a collection
of variable-sized blocks, which are either

allocated or free

What happens if we run out of heap
space?

= Ask the OS for more memory and increment

brkl

L20: Memory Allocation |

bottom of

($rsp)

User stack

1 !

b —7

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

CSE351, Spring 2024

Top of

| heap

(brk ptr)

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Allocating Memory in C (Review)

» Needto #include <stdlib.h>

» vold* malloc (size_t size)

= Allocates a continuous block of size bytes of uninitialized memory

" size t?!Simple typedef foran unsigned 8-byte integer
= Returns a pointer to the beginning of the allocated block; NULL if request failed

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
. [Returns NULL if allocation failed](also sets errno) or size==

= Different blocks not necessarily adjacent

+» Best practices:/

" ptr = (1nt*) malloc(n*sizeof (1int)); //4//“,1/: 5/0443 /::/ n—nary /'mLJ
sizeof makes code more portable (ints aren’t the same size in all machines...)

- void* is implicitly cast into any pointer type; explicit typecast will help you catch coding errors when
pointer types don’t match 8.7- (int *)

10

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Allocating Memory in C (Review)

» Needto #include <stdlib.h>

» vold* malloc (size_t size)

= Allocates a continuous block of size bytes of uninitialized memory

" size t?!Simple typedef foran unsigned 8-byte integer
= Returns a pointer to the beginning of the allocated block; NULL if request failed
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+ Related functions:
" void* calloc(size t nitems, size t size)
“Zeros out” allocated bIock_ B
" void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)
" void* sbrk(intptr t increment)

Used internally by allocators to grow or shrink the heap »

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Freeing Memory in C (Review)

)
0’0

Needto #include <stdlib.h>

void free (void¥*) //A/o/'a.' /:’eg;,, Aossa’¥ c‘wf /oo//)/e/ valve! Z# u/l/JA'//,o::M:‘ /o (new)
dﬂa//xc/GJ

Méﬂo-’/ .

)
0’0

= Releases whole block pointed to by p back to the pool of available memory

= Pointer p must be the address originally returned by (m|c|re)alloc
(i.e., beginning of the block), otherwise system exception raised

= Don’t call free on a block that has already been released!
= No action occurs if you call free (NULL)

12

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Memory Allocation Example in C

17 cvy
3 2 ! 72]
void foo(int n, int m) { \\\\3 —
)) QO n+m
int 1, *p;
p = (int*) malloc (n*sizeof (int)) ; /* allocate block of n ints for an array */
if (p == NULL) { - /* check for allocation error */
perror ("malloc") ;
exit (0) ;
}
for (i=0; i<n; 1i++) /* initialize int array */
pli] = 1i;
= (int*) realloc(p, (n+m) *sizeof (int)) ; /* add space form ints to end of p block */
(p == NULL) { - /* check for allocation error */
perror ("realloc");
exit (0) ;
for (i=n; 1 < n+m; 1i++) /* initialize new spaces only */
pli] = 1;
for (i=0; i<n+m; i++) /* print new array */
printf ("sd\n", pl[i]);
ee (p); /* freep */
= NULL; /* good practice to set p to NULL dfter free*/

13

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Notation

+» We will draw memory divided into words

= Each word is 64 bits = 8 bytes

= Allocations will be in sizes that are a multiple of words
(i.e., multiples of 8 bytes)

" Note: Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook ‘&

/L/ 8a/0 P —
Allocated block Free block =1 word = 8 bytes
(4 words) (3 words) Free word
S8 246 Allocated word

14

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Allocation Example

= 8-byte word

pl = malloc (32)

p2 = malloc (40)

p3 = malloc (48)

free (p2) 42”7 ZOOZ
777 7277
e o~

P4 = malloc (16)

A//oc'v/
heve, but choice z/e/ends on /J/arcmcn/ /oo/'y/

15

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Implementation Interface (Review)

+ Applications
= Canissue arbitrary sequence of malloc and free requests
= Must never access memory not currently allocated

= Must never free memory not currently allocated
 Also must only use free with previously malloc’ed blocks

<+ Allocators

= Can’t control number or size of allocated blocks

= Must respond immediately to malloc (cut rods o botle #hen))
" Must allocate blocks from free memory /,, owlalig o M”app'?)
= Must align blocks so they satisfy all alignment requirements

= Can’t move the allocated blocks 600\.

CSE351, Spring 2024

16

WA/ UNIVERSITY of WASHINGTON

L20: Memory Allocation |

Performance Goals (Review)

L 4

L)

Goals: Given some sequence of malloc and free requests

Ry, R4, ..., Ry, ..., R,,_1, maximize throughput and peak memory
utilization

" These goals are often conflicting...

1) Throughput

= Number of completed requests per unit time
= Example:

« If 5,000 malloc callsand 5,000 free calls completed in 10 seconds, then
throughput is 1,000 operations/second

CSE351, Spring 2024

17

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Performance Goals

+ Definition: Aggregate payload P;,
" malloc (p) resultsin a block with a payload of p bytes

= After request R has completed, the aggregate payload P, is the sum of currently
allocated payloads

+ Definition: Current heap size Hy,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
= Defined as Uy, = (mz}(x P;)/H, after k+1 requests
1<

= Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput?

CSE351, Spring 2024

18

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Fragmentation (Review)

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful, but cannot satisfy
allocation requests

= Two types: internal and external

+» Recall: Fragmentation in structs
" |nternal fragmentation was wasted space inside of the struct (between fields) due
to alignment

= External fragmentation was wasted space between struct instances (e.g., in an
array) due to alignment

+» Now referring to wasted space in the heap inside or between allocated
blocks

19

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Internal Fragmentation

+ For a given block, internal fragmentation occurs if payload is smaller
than the block

block
A
e N
Internal Internal
fragmentation — | payload) fragmentation

= Causes: '\/
= Padding forlalignmenttpurposes N

"= QOverhead of maintaining heap|data structure‘j‘(inside block, outside payload)

= Explicit policy decisions (e.g., return a big block to satisfy a small request)

+ Easy to measure because only depends on past requests TN/, 7 Fagler in

/’AIOJ éfd/', JU/
bod hov u/v‘/?-

20

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

External Fragmentation

+ For the heap, external fragmentation occurs when allocation/free pattern leaves
“holes” between blocks
" Thatis, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to satisfy request, but no
single free block is large enough

pl = malloc (32) = 8-byte word

p2 = malloc (40)

p3 = malloc (48)

free (p2)

P4 = malloc (48) Oh no! (What would happen now?)

+» Don’t know what future requests will be
= Difficult to impossible to know if past placements will become problematic

21

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Polling Question

/
+» Which of the following statements is FALSE? i he she

A. Temporary arrays should not be allocated on the Heap

B. malloc returns an address of a block that is filled with mystery
data - Yep!

C. Peak memory utilization is a measure of both internal and external
fragmentation ldﬂl’!

An allocation failure will catseyoturprogram-toe-stop.

ah b reloms MNULL
E. We're lost... nan, 4 "8

22

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Implementation Issues

p—

+» How do we know how much memory to free given just a pointer?

+» How do we keep track of the free blocks?

-—)

~+ How do we pick a block to use for allocation (when many might fit)?

+» What do we do with the extra space when allocating a structure that is
smaller than the free block it is placed in?

+» How do we reinsert a freed block into the heap?

23

CSE351, Spring 2024

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Implementation Issues

<~ How do we know how much memory to free given just a pointer?
+» How do we keep track of the free blocks?
+» How do we pick a block to use for allocation (when many might fit)?

+» What do we do with the extra space when allocating a structure that is
smaller than the free block it is placed in?

+» How do we reinsert a freed block into the heap?

24

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Knowing How Much to Free

« Standard method

= Keep the length of a block in the word preceding the data
- This word is often called the header field or just, header

= Requires an extra word for every allocated block = 8-byte word (free)
= 8-byte word (allocated)

pOK——— foin/j fo /a//ou/_/

PO = malloc (32)

40
block size data
(P‘(?/“/ + /waa/d/)

free (p0)

25

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation |

Keeping Track of Free Blocks

1) Implicit free list using length — links all blocks using math

——————
= No actual pointers, and must check each block if allocated or free
A”———s\ ’z—‘\\ - T T *
i G |1 G &)
)) lTr" |

2) Explicit free list among only the free blocks, using pointers <

. _— -

/ >

40 - 32 48[7 16

3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key

CSE351, Spring 2024

= 8-byte word (free)

= 8-byte word (allocated)

(

LLab 5 funness!]

Out of scope
of 351

S—

26

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Which
/_ s

[] [] [4 A . .
Implicit Free Lists el 443 e.g., with & byte alignment, oocanteed !
/v possible values for size: ﬁ
00001000 = 8 bytes
+» For each block we need: size, is-allocated? 00010000 = 16 bytes

: : 00011000 = 24 bytes
" Could store using two words, but kinda wasteful... y

/7

« Standard trick

= If blocks are aligned, some low-order bits of size are always O

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

= When reading size, must remember to mask out this bit! Don’t forget!

8 bytes X - \
Format of size Ia Da =1: allocated block If x is the header:
allocated and

a =0: free block
free blocks: X = size | a;

payload size: block size (in bytes)

payload: application data
optional (allocated blocks only) size = x § ~1:
padding

27

WA/ UNIVERSITY of WASHINGTON L20: Memory Allocation | CSE351, Spring 2024

Header Questions

+» How many “flags” can we fit in our header if our allocator uses 16-byte

alignment?
g'bﬁ& -2 3 /gao’/ J/jm’/r"tcn/ 6//11 are all 0/Jo U/O b J/’/7\;

[6- bote —> 4 Jeust J’/';m'//ccm‘ by are all 0, So wpto //7;

/

+ If we placed a new “flag” in the second least significant bit, write out a C
expression that will extract this new flag from the header!

Ophon #1: (headewr >71) £/

Option # 2: (header & Z) > |

28

