
CSE351, Spring 2024L21: Memory Allocation II

Memory Allocation II
CSE 351 Spring 2024

Instructor:
Elba Garza

Teaching Assistants:
Ellis Haker Maggie Jiang
Adithi Raghavan Malak Zaki
Aman Mohammed Naama Amiel
Brenden Page Nikolas McNamee
Celestine Buendia Shananda Dokka
Chloe Fong Stephen Ying
Claire Wang Will Robertson
Hamsa Shankar

Playlist: CSE 351 24Sp Lecture Tunes!

https://open.spotify.com/playlist/7LdKAsla4pk4A0rxUyEWxF?si=70e6a27233ad410d

CSE351, Spring 2024L21: Memory Allocation II

Announcements, Reminders

v HW17/18 due tonight!
§ HW19 due Monday (13 May)
§ HW20 due Tuesday (15 May)
§ HW21 due Friday (17 May)

v Lab 4 due May 17th

§ Lab 5 will release same day!
§ Given Lab 5 is due May 31st, use any late days left on Lab 4!

v Looking ahead: Guest lectures on May 15th and 17th

2

CSE351, Spring 2024L21: Memory Allocation II

Reading Review

v Terminology:
§ Allocation strategies: first fit, next fit, best fit
§ Allocating a block: splitting, minimum block size
§ Freeing a block: coalescing
§ Boundary tags: header and footer
§ Explicit free list

3

CSE351, Spring 2024L21: Memory Allocation II

4

Header Questions

v How many “flags” can we fit in our header if our allocator uses 16-byte
alignment?

v If we placed a new “flag” in the second least significant bit, write out a C
expression that will extract this new flag from the header!

CSE351, Spring 2024L21: Memory Allocation II

Implicit Free List Example

v 16-byte alignment for payload
§ Address of payload must be a multiple of the aignment
§ May require initial padding (internal fragmentation)
§ Note size: padding is considered part of previous block

v Special one-word marker (0|1) marks end of list
§ Zero size is distinguishable from all other blocks (external fragmentation) 5

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2 word alignment

v Each block begins with header containing size in bytes and allocated bit
v Sequence of blocks in heap (size|allocated): 16|0, 32|1, 64|0, 32|1

= 8-byte word
End of heap

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Finding a Free Block

v First fit
§ Search list from beginning, choose first free block that fits:

§ Can take time linear in total number of blocks
§ In practice can cause “splinters” at beginning of list

6

p = heap_start;
while ((p < end) && // not past end of heap
 ((*p & 1) || // checked allocated bit & it’s taken :(
 (*p <= len))) { // block is too small :(
 p = p + (*p & -2); // Thus, go to next block (UNSCALED +)
} // p points to selected block or end

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start

(*p) gets the block header
(*p & 1) extracts the
allocated bit

(*p & -2) extracts the size

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Finding a Free Block

v Next fit
§ Like first-fit, but search list starting where previous search finished
§ Should often be faster than first-fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

v Best fit
§ Search the list & choose the best free block: large enough and with fewest

bytes left over
§ Keeps fragments small—usually helps fragmentation
§ Usually worse throughput, because being picky means timing is worse

7

CSE351, Spring 2024L21: Memory Allocation II

Polling Question
v Which allocation strategy and requests

remove external fragmentation in this
Heap? Note, B3 was the last fulfilled request.

8

Best-fit:
malloc(50), malloc(50)

(A)

First-fit:
malloc(50), malloc(30)

(B)

Next-fit:
malloc(30), malloc(50)

(C)

Next-fit:
malloc(50), malloc(30)

(D) B1

B3

B210

10

50

50

50

30

Start of heap

payload
size

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Allocating in a Free Block

v Allocating in a free block: splitting
§ Since allocated space might be smaller than free space,

we might want to split the block

9

void split(ptr b, int bytes) { // bytes = desired block size
 int newsize = ((bytes+15) >> 4) << 4; // round up to multiple of 16
 int oldsize = *b; // why not mask out low bit?
 *b = newsize; // initially unallocated
 if (newsize < oldsize)
 *(b+newsize) = oldsize - newsize; // set length in remaining
} // part of block (UNSCALED +)

Assume ptr points to a
free block and has unscaled
pointer arithmetic

malloc(24):
 ptr b = find(24+8)
 split(b, 24+8)
 allocate(b)

Free word

Allocated word

Newly-allocated
word

16|1 16|148|0

b

16|016|1 16|132|1

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Freeing a Block

v Simplest implementation just clears “allocated” flag & be done
§ void free(ptr p) {*(p-WORD) &= -2;}
§ But this can lead to “false fragmentation”…

10

p

Oops! There’s enough free space, but the allocator won’t be able to find it!

16|016|1 16|132|1
Free word

Allocated word

Block of interest
16|016|1 16|132|0

malloc(40)

free(p)

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Coalescing with Next
v Join (i.e. coalesce) with the next block if it’s also free

v How do we coalesce with a preceding block, though?
11

void free(ptr p) { // p points to payload
 ptr b = p – WORD; // b points to block header
 *b &= -2; // clear allocated bit
 ptr next = b + *b; // find next block (UNSCALED +)
 if ((*next & 1) == 0) // if next block is not allocated,
 *b += *next; // add its size to this block
}

logically gone

16|016|1 16|132|1

16|016|1 16|148|0free(p)

p
Free word

Allocated word

Block of interest

CSE351, Spring 2024L21: Memory Allocation II

Implicit List: Bidirectional Coalescing

v Boundary tags [Knuth73]

§ Replicate header at “bottom” (end) of free blocks
§ Allows us to traverse backwards, but requires extra space
§ Important and general technique!

12

Footer

32/0 32/0 32/1 32/1 48/0 32/148/0 32/1

Header size

payload and
padding

a

size a

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

Boundary tags

CSE351, Spring 2024L21: Memory Allocation II

Constant Time Coalescing

13

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being freed

Case 1 Case 2 Case 3 Case 4

CSE351, Spring 2024L21: Memory Allocation II

Constant Time Coalescing
m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Case 1 m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Case 2

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Case 3 m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Case 4

CSE351, Spring 2024L21: Memory Allocation II

Implicit Free List Review Questions

v What is the block header? What do we store and how?

v What are boundary tags and why do we need them?

v When we coalesce free blocks, how many neighboring blocks do we need to check on
either side? Why is this?

v If I want to check the size of the 𝑛-th block forward from the current block, how many
memory accesses do I make?

15

32/0 32/0 32/1 32/1 48/0 32/148/0 32/1

CSE351, Spring 2024L21: Memory Allocation II

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
§ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
§ Different free lists for different size “classes”

4) Blocks sorted by size
§ Can use a balanced binary tree (e.g., red-black tree) with pointers within

each free block, and the length used as a key
16

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2024L21: Memory Allocation II

Explicit Free Lists

v Use list(s) of free blocks, rather than implicit list of all blocks
§ The “next” free block could be anywhere in the heap

• So we need to store next/previous pointers, not just sizes

§ Since we only track with pointers when a block is free, we can use the payload “space” for pointers
• In Lab 5, it’ll be a bit different. All info: size, allocated bit, pointers are stored in a struct

§ Still need boundary tags (header/footer) for coalescing
17

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

CSE351, Spring 2024L21: Memory Allocation II

Doubly-Linked Lists

v Linear
§ Needs head/root pointer
§ First node prev pointer is NULL
§ Last node next pointer is NULL
§ Good for first-fit, best-fit

v Circular
§ Still have pointer to tell you which node to start with
§ No NULL pointers (term condition is back at starting point)
§ Good for next-fit, best-fit

18

Root ⋅⋅⋅

Start ⋅⋅⋅

CSE351, Spring 2024L21: Memory Allocation II

Explicit Free Lists

v Logically: doubly-linked list

v Physically: blocks can be in any order

19

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

CSE351, Spring 2024L21: Memory Allocation II

Allocating From Explicit Free Lists
Splitting Version

20

Before

After
(with splitting)

malloc(…)=

Note: These diagrams are not very
specific about where inside a block a
pointer points. In reality we would
always point to one place (e.g.,
start/header of a block).

malloc(…)=

CSE351, Spring 2024L21: Memory Allocation II

Allocating From Explicit Free Lists
Full Allocation Version

21

Before

After
(fully allocated)

= malloc(…)

Note: These diagrams are not very
specific about where inside a block a
pointer points. In reality we would
always point to one place (e.g.,
start/header of a block).

malloc(…)=

malloc(…)=

CSE351, Spring 2024L21: Memory Allocation II

Freeing With Explicit Free Lists

v Insertion policy: Where in the free list do you put the newly freed block?

§ LIFO (last-in-first-out) policy
• Insert freed block at the beginning (head) of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than the alternative

§ Address-ordered policy
• Insert freed blocks so that free list blocks are always in address order:
 address(previous) < address(current) < address(next)
• Pro: studies suggest fragmentation is better than the alternative
• Con: requires linear-time search

22

CSE351, Spring 2024L21: Memory Allocation II

Coalescing in Explicit Free Lists

v Neighboring free blocks are already part of the free list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

v How do we tell if a neighboring block is free?

23

Block being freed
Allocated

Allocated

Case 1
Allocated

Free

Case 2
Free

Allocated

Case 3
Free

Free

Case 4

CSE351, Spring 2024L21: Memory Allocation II

Freeing with LIFO Policy (Case 1)

v Insert the freed block at the root of the list

24

Before

After

Root

Boundary tags not
shown, but don’t

forget about them!

free()

Root

CSE351, Spring 2024L21: Memory Allocation II

Freeing with LIFO Policy (Case 2)

v Splice following block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

25

Before

Root

free()

After

Root

Boundary tags not
shown, but don’t

forget about them!

CSE351, Spring 2024L21: Memory Allocation II

Freeing with LIFO Policy (Case 3)

v Splice preceding block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

26

Before

Root

free()

After

Root

Boundary tags not
shown, but don’t

forget about them!

CSE351, Spring 2024L21: Memory Allocation II

Freeing with LIFO Policy (Case 4)

v Splice preceding and following blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

27

Before

Root

free()

After

Root

Boundary tags not
shown, but don’t

forget about them!

CSE351, Spring 2024L21: Memory Allocation II

Do we always need the boundary tags?

v Lab 5 suggests no…
28

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

CSE351, Spring 2024L21: Memory Allocation II

Explicit List Summary
v Comparison with implicit list:

§ Block allocation is linear time in number of free blocks instead of all blocks
• Much faster when most of the memory is full

§ Slightly more complicated allocate and free since we need to splice blocks in and out of the list
§ Some extra space for the links (2 extra pointers needed for each free block)

• Increases minimum block size, leading to more internal fragmentation

v Most common use of explicit lists is in conjunction with segregated free lists
§ Keep multiple linked lists of different size classes, or possibly for different types of objects

29

