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Relevant Course Information

+ Lab submissions that fail the autograder get a ZERO

"= No excuses — make full use of tools & Gradescope’s interface
" |eeway on Lab 1a won’t be given moving forward

+ Lab 2 (x86-64) released Wednesday

" |earn to trace x86-64 assembly and use GDB

+» Midterm is in two weeks (take home, 2/8-10)

" Open book; make notes and use midterm reference sheet

" |ndividual, but discussion allowed via “Gilligan’s Island Rule”
= Mix of “traditional” and design/reflection questions

- Form study groups and look at past exams!

CSE351, Winter 2024


https://courses.cs.washington.edu/courses/cse351/23au/exams/ref-mt.pdf
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Lesson Summary (1/2)

+» Memory Addressing Modes: Memory operands specify an address in
several different forms

= D(Rb,R1i,S) with base register, index register, scale factor, and displacement

compute the address Reg[Rb |+Reg[R1]*S+D and is usually dereferenced
(Mem[ ]) by instructions

- Defaults when omitted: Reg[Rb]=0, Reg[R1]=0, S=1, D=0

®= These map well to pointer arithmetic operations (S = size of data type)

+ Load effective address (1ea) instruction used to compute addresses and
perform basic arithmetic

" Doesn’t dereference the source memory operand, unlike all other instructions!

= Useful for computing an address (e.g., &a[ 2]) or basic arithmetic (e.g., x+4*y+7)
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Lesson Summary (2/2)

+ Extension instructions (movz, movs) allow us to zero and sign extend data
into longer widths

= Require two size suffixes for source (smaller) and destination (larger)

+ Control flow in x86 determined by Condition Codes

= Showed Carry, Zero, Sign, and Overflow, though others exist

= Set flags with arithmetic & logical instructions (implicit) or Compare and Test
(explicit)


https://en.wikipedia.org/wiki/Status_register#Common_flags
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Lesson Q&A

+» Learning Objectives:
" Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

= Use GDB tools to step through a running program and extract debugging

information from a program’s disassembly, the state of registers, and values at
specific memory locations.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions
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Polling Questions (1/2)

+ D(Rb,R1i,S) computes address Reg[Rb]+Reg[R1]*S+D
= Likely will get dereferenced, but that’s up to the instruction
= Default values: D =0, Reg[Rb] =0, Reg[Ri]=9,S=1

«» Assuming %rdx contains OxF000 and %rcx contains 9x100, what
addresses are computed by the following memory operands?

= Ox8(%rdx)

= (%rdx,%rcx)

= (%rdx,%rcx,4)
Ox80(,%rdx,2)
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Polling Questions (2/2)

+ Which of the following x86-64 instructions correctly calculates
%rax=9*%rdi?
A.
B. movg (,%rdi,9), %rax
C. leaq (%rdi,%rdi,8), %rax

D. movg (%rdi,%rdi,8), %Srax

CSE351, Winter 2024
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Context
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Extension Instructions (Review)

2 width speci‘FIea: b,uw,l, g_
bytes

P SN 1 2 4

« movz__ src, dst
movs___ src, dst

" Copy from a smaller source value to a larger destination

# Move with zero extension
# Move with sign extension

- First suffix letter is size of source, second suffix letter is size of destination

- Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

» Example; data shown in hex
Y

= movzbq %al, 7%rbx
T —"
Zero-exer\ $ byles

2 [ 22 | 22 | 22 | 22 | 22 | 22 | FE)

(\./

00 | 00 | 00 [ 00 | 00 | 00 | 00 | FF
IS

2o »Cﬂ‘?na
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«%rax

«%rbx
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Extension Instructions (Review)

« movz__ src, dst
movs___ src, dst

" Copy from a smaller source value to a larger destination

# Move with zero extension
# Move with sign extension

- First suffix letter is size of source, second suffix letter is size of destination

- Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

4

« Example: data shown in hex

U byte
* movsbl (%rax), Z%ebx

- NN
3371—6’(‘,1'\& j j—m ‘meeﬁwy

Recall, any x86-64 instruction that stores
into a 32-bit (suffix 1) register zeros out
the upper 4 bytes of the register.

pointes
00 | @0 | 7F | FF 4 C6 | 1F | A4 | E8
2? | 22 @eé 2| 22 | 22
~—" m.__.\____ _@_L
00 | 00 | 00 | 00 | FF | FF | FF | 80
P —

ZerD owt

o -extea
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«%rax

<~ MEM

«%rbx
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GDB Demo

+» The movz and movs examples on a real machine!
"= movzbqg %al, 7%rbx
" movsbl (%rax), %ebx

+ You will need to use GDB to get through Lab 2

= Useful debugger in this class and beyond!

« Pay attention to:
= Setting breakpoints (break)

= Stepping through code (step/next and stepi/nexti)

= Printing out expressions (print —works with regs & vars)
= Examining memory (X)

CSE351, Winter 2024
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Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support



