W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

CSE351, Winter 2024

X86-64 Programming I

CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen

Eyoel Gebre
Jiawei Huang
Malak Zaki

Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson

TLL BE IN YOUR CITY TOMORROU
IF YOU LIANT TO HANG OUT.

BUT LHERE. LJILL YOV BE IF
I OONVT LANT TO HANG oUT?!

YOU KNOL) I JUsT
REMEMBERED IM Busy.

WHY T TRy NoT 10 BE
PEDANTIC ABOUT CONDITIONALS.

http://xkcd.com/1652/

http://xkcd.com/1652/

W UNIVERSITY of WASHINGTON LO8: x86-64 Programming Ii

Relevant Course Information

+ Lab submissions that fail the autograder get a ZERO

"= No excuses — make full use of tools & Gradescope’s interface
" |eeway on Lab 1a won’t be given moving forward

+ Lab 2 (x86-64) released Wednesday

" |earn to trace x86-64 assembly and use GDB

+» Midterm is in two weeks (take home, 2/8-10)

" Open book; make notes and use midterm reference sheet

" |ndividual, but discussion allowed via “Gilligan’s Island Rule”
= Mix of “traditional” and design/reflection questions

- Form study groups and look at past exams!

CSE351, Winter 2024

https://courses.cs.washington.edu/courses/cse351/23au/exams/ref-mt.pdf

W UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Winter 2024

x86-64 Programming i

W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

CSE351, Winter 2024

Lesson Summary (1/2)

+» Memory Addressing Modes: Memory operands specify an address in
several different forms

= D(Rb,R1i,S) with base register, index register, scale factor, and displacement

compute the address Reg[Rb |+Reg[R1]*S+D and is usually dereferenced
(Mem[]) by instructions

- Defaults when omitted: Reg[Rb]=0, Reg[R1]=0, S=1, D=0

®= These map well to pointer arithmetic operations (S = size of data type)

+ Load effective address (1ea) instruction used to compute addresses and
perform basic arithmetic

" Doesn’t dereference the source memory operand, unlike all other instructions!

= Useful for computing an address (e.g., &a[2]) or basic arithmetic (e.g., x+4*y+7)

W UNIVERSITY of WASHINGTON L08: x86-64 Programming Il CSE351, Winter 2024

Lesson Summary (2/2)

+ Extension instructions (movz, movs) allow us to zero and sign extend data
into longer widths

= Require two size suffixes for source (smaller) and destination (larger)

+ Control flow in x86 determined by Condition Codes

= Showed Carry, Zero, Sign, and Overflow, though others exist

= Set flags with arithmetic & logical instructions (implicit) or Compare and Test
(explicit)

https://en.wikipedia.org/wiki/Status_register#Common_flags

W UNIVERSITY of WASHINGTON L08: x86-64 Programming Il

CSE351, Winter 2024

Lesson Q&A

+» Learning Objectives:
" Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

= Use GDB tools to step through a running program and extract debugging

information from a program’s disassembly, the state of registers, and values at
specific memory locations.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions

X86-64 Programming ll=—

Practice

W UNIVERSITY of WASHINGTON LO8: x86-64 Programming Ii CSE351, Winter 2024

Polling Questions (1/2)

+ D(Rb,R1i,S) computes address Reg[Rb]+Reg[R1]*S+D
= Likely will get dereferenced, but that’s up to the instruction
= Default values: D =0, Reg[Rb] =0, Reg[Ri]=9,S=1

«» Assuming %rdx contains OxF000 and %rcx contains 9x100, what
addresses are computed by the following memory operands?

= Ox8(%rdx)

= (%rdx,%rcx)

= (%rdx,%rcx,4)
Ox80(,%rdx,2)

W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

Polling Questions (2/2)

+ Which of the following x86-64 instructions correctly calculates
%rax=9*%rdi?
A.
B. movg (,%rdi,9), %rax
C. leaq (%rdi,%rdi,8), %rax

D. movg (%rdi,%rdi,8), %Srax

CSE351, Winter 2024

X86-64 Programming ll=—

Context

W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

Extension Instructions (Review)

2 width speci‘FIea: b,uw,l, g_
bytes

P SN 1 2 4

« movz__ src, dst
movs___ src, dst

" Copy from a smaller source value to a larger destination

Move with zero extension
Move with sign extension

- First suffix letter is size of source, second suffix letter is size of destination

- Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

» Example; data shown in hex
Y

= movzbq %al, 7%rbx
T —"
Zero-exer\ $ byles

2 [22 | 22 | 22 | 22 | 22 | 22 | FE)

(\./

00 | 00 | 00 [00 | 00 | 00 | 00 | FF
IS

2o »Cﬂ‘?na

CSE351, Winter 2024

«%rax

«%rbx

11

W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

Extension Instructions (Review)

« movz__ src, dst
movs___ src, dst

" Copy from a smaller source value to a larger destination

Move with zero extension
Move with sign extension

- First suffix letter is size of source, second suffix letter is size of destination

- Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

" sprc can be Mem or Reg; dst must be Reg

4

« Example: data shown in hex

U byte
* movsbl (%rax), Z%ebx

- NN
3371—6’(‘,1'\& j j—m ‘meeﬁwy

Recall, any x86-64 instruction that stores
into a 32-bit (suffix 1) register zeros out
the upper 4 bytes of the register.

pointes
00 | @0 | 7F | FF 4 C6 | 1F | A4 | E8
2? | 22 @eé 2| 22 | 22
~—" m.__.____ _@_L
00 | 00 | 00 | 00 | FF | FF | FF | 80
P —

ZerD owt

o -extea

CSE351, Winter 2024

«%rax

<~ MEM

«%rbx

12

W UNIVERSITY of WASHINGTON

LO8: x86-64 Programming Il

GDB Demo

+» The movz and movs examples on a real machine!
"= movzbqg %al, 7%rbx
" movsbl (%rax), %ebx

+ You will need to use GDB to get through Lab 2

= Useful debugger in this class and beyond!

« Pay attention to:
= Setting breakpoints (break)

= Stepping through code (step/next and stepi/nexti)

= Printing out expressions (print —works with regs & vars)
= Examining memory (X)

CSE351, Winter 2024

13

W UNIVERSITY of WASHINGTON L08: x86-64 Programming Il

Group Work Time

CSE351, Winter 2024

« During this time, you are encouraged to work on the following:

1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

Resources:
®" You can revisit the lesson material

= Work together in groups and help each other out

" Course staff will circle around to provide support

