
CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

x86-64 Programming II
CSE 351 Winter 2024

Instructor:
Justin Hsia

Teaching Assistants:
Adithi Raghavan
Aman Mohammed
Connie Chen
Eyoel Gebre
Jiawei Huang
Malak Zaki
Naama Amiel
Nathan Khuat
Nikolas McNamee
Pedro Amarante
Will Robertson http://xkcd.com/1652/

http://xkcd.com/1652/

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Relevant Course Information

❖ Lab submissions that fail the autograder get a ZERO

▪ No excuses – make full use of tools & Gradescope’s interface

▪ Leeway on Lab 1a won’t be given moving forward

❖ Lab 2 (x86-64) released Wednesday

▪ Learn to trace x86-64 assembly and use GDB

❖ Midterm is in two weeks (take home, 2/8–10)

▪ Open book; make notes and use midterm reference sheet

▪ Individual, but discussion allowed via “Gilligan’s Island Rule”

▪ Mix of “traditional” and design/reflection questions
• Form study groups and look at past exams!

2

https://courses.cs.washington.edu/courses/cse351/23au/exams/ref-mt.pdf

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

3

x86-64 Programming II

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Lesson Summary (1/2)

❖ Memory Addressing Modes: Memory operands specify an address in
several different forms

▪ D(Rb,Ri,S) with base register, index register, scale factor, and displacement
compute the address Reg[Rb]+Reg[Ri]*S+D and is usually dereferenced
(Mem[]) by instructions
• Defaults when omitted: Reg[Rb]=0, Reg[Ri]=0, S=1, D=0

▪ These map well to pointer arithmetic operations (S = size of data type)

❖ Load effective address (lea) instruction used to compute addresses and
perform basic arithmetic

▪ Doesn’t dereference the source memory operand, unlike all other instructions!

▪ Useful for computing an address (e.g., &a[2]) or basic arithmetic (e.g., x+4*y+7)
4

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Lesson Summary (2/2)

❖ Extension instructions (movz, movs) allow us to zero and sign extend data
into longer widths

▪ Require two size suffixes for source (smaller) and destination (larger)

❖ Control flow in x86 determined by Condition Codes

▪ Showed Carry, Zero, Sign, and Overflow, though others exist

▪ Set flags with arithmetic & logical instructions (implicit) or Compare and Test
(explicit)

5

https://en.wikipedia.org/wiki/Status_register#Common_flags

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Lesson Q&A

❖ Learning Objectives:

▪ Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, [if-else statements, and/or loops].

▪ Use GDB tools to step through a running program and extract debugging
information from a program’s disassembly, the state of registers, and values at
specific memory locations.

❖ What lingering questions do you have from the lesson?

▪ Chat with your neighbors about the lesson for a few minutes to come up with
questions

6

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

7

x86-64 Programming II –
Practice

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Polling Questions (1/2)

❖ D(Rb,Ri,S) computes address Reg[Rb]+Reg[Ri]*S+D

▪ Likely will get dereferenced, but that’s up to the instruction

▪ Default values: D = 0, Reg[Rb] = 0, Reg[Ri] = 0, S = 1

❖ Assuming %rdx contains 0xF000 and %rcx contains 0x100, what
addresses are computed by the following memory operands?

▪ 0x8(%rdx)

▪ (%rdx,%rcx)

▪ (%rdx,%rcx,4)

▪ 0x80(,%rdx,2)

8

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Polling Questions (2/2)

❖ Which of the following x86-64 instructions correctly calculates
%rax=9*%rdi?
A. leaq (,%rdi,9), %rax

B. movq (,%rdi,9), %rax

C. leaq (%rdi,%rdi,8), %rax

D. movq (%rdi,%rdi,8), %rax

9

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

10

x86-64 Programming II –
Context

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movzbq %al, %rbx

11

?? ?? ?? ?? ?? ?? ?? FF ←%rax

00 00 00 00 00 00 00 FF ←%rbx

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Extension Instructions (Review)

❖ movz__ src, dst # Move with zero extension

movs__ src, dst # Move with sign extension

▪ Copy from a smaller source value to a larger destination
• First suffix letter is size of source, second suffix letter is size of destination

• Recall: zero-extension always fills with 0, sign-extension fills with copy of the sign bit

▪ src can be Mem or Reg; dst must be Reg

❖ Example: data shown in hex

▪ movsbl (%rax), %ebx

12

00 00 7F FF C6 1F A4 E8 ←%rax

00 00 00 00 FF FF FF 80 ←%rbx

... ?? ?? 80 ?? ?? ?? ... ← MEM
Recall, any x86-64 instruction that stores
into a 32-bit (suffix l) register zeros out
the upper 4 bytes of the register.

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

GDB Demo

❖ The movz and movs examples on a real machine!

▪ movzbq %al, %rbx

▪ movsbl (%rax), %ebx

❖ You will need to use GDB to get through Lab 2

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Setting breakpoints (break)

▪ Stepping through code (step/next and stepi/nexti)

▪ Printing out expressions (print – works with regs & vars)

▪ Examining memory (x)
13

CSE351V00: IntroductionL08: x86-64 Programming II CSE351, Winter 2024

Group Work Time

❖ During this time, you are encouraged to work on the following:

1) If desired, continue your discussion

2) Work on the homework problems

3) Work on the lab (if applicable)

❖ Resources:

▪ You can revisit the lesson material

▪ Work together in groups and help each other out

▪ Course staff will circle around to provide support

14

