YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill

X86-64 Programming lli

CSE 351 Winter 2024

Instructor:
Justin Hsia
T COULDRESTRUCTURE | | EH, SCREW GaDD PRACTICE.
Teaching Assistants: THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?
ithi OR [JSE ONE LITTLE goto main-sub3;
Adithi Raghavan Gor INSTEAD \ !JJ
Aman Mohammed

\
Connie Chen & * COMPILE*
Eyoel Gebre
Jiawei Huang
Malak Zaki http://xked.com/571/
Naama Amiel
Nathan Khuat
Nikolas McNamee

Pedro Amarante
Will Robertson

CSE351, Winter 2024

http://xkcd.com/571/

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Relevant Course Information

+» Lab 1la regrade requests open on Gradescope
+» Lab 1b submissions close tonight
+ Lab 2 due next Friday (2/2)

= Section tomorrow on to help prep you for Lab 2 — use the midterm reference sheet
& bring your laptop!

= Optional GDB Tutorial in Ed Lessons

+» Midterm (take home, 2/8-2/10)

= Make notes and use the midterm reference sheet

" Form study groups and look at past exams!

https://courses.cs.washington.edu/courses/cse351/24wi/exams/ref-mt.pdf

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Extra Credit

+ All labs starting with Lab 2 have extra credit portions

" These are meant to be fun extensions to the labs

+ Extra credit points don't affect your lab grades

" From the course policies: “they will be accumulated over the course and will be
used to bump up borderline grades at the end of the quarter.”

= Make sure you finish the rest of the lab before attempting any extra credit

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

x86-64 Programming |l

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Lesson Summary (1/3)

+ Labels (e.g., main, .L0O) refer to an instruction address and used as jump
targets in assembly

+ Control flow in x86 determined by Condition Codes

= Set instructions (set*) (op) s, d | cmp a, b [test a, b
read out flag values (0/1) je sete ‘Equal d (op) s==10 | ba==0|[bla==0
jne setne “Notequal” d (op) s I=0 b-a !=0 | b& != 0

- Jump instructions (J*) js sets “Signed” (negative) d (op) s < © b-a < © | b& < ©
use flag values to determine jns setns “Notsigned” (nonnegative) | d (op) s >= @ | b-a >= 0 | b& >= 0
next instruction to execute jg setg “Greater d (op) s> @ | b-a> 0| bk > @

= Result of 15t instruction :?ge setge “Greateror equal” d (op) s >= 0 b-a >= 0 | b& >= 0
] jl setl “Less” d (op) s < © b-a < © | b& < ©

gets Compared agalnSt 0 jle setle “Lessorequal’ d (op) s <=0 b-a < © | b& <= 0
in a way determined ja seta “Above” (unsigned >) d (op) s > eU b >, a b&a > OU
by 2" instruction: jb setb “Below” (unsigned <) d(op) s<oUu | b<,a | bga < eu

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Lesson Summary (2/3)

+» Most control flow constructs (e.g., if-else, for-loop, while-loop) can be
implemented in assembly using combinations of conditional and
unconditional jumps

= Differences come from placement of jumps and whether they jump forward or
backwards in code

if (<test>) I do { I while (<test>) { I <init>
<then> I <body> I <body> || while (<test>) {
else || } while (<test>) |||} | <loop body>
<else> | | |
<ltest> <test> I top: <body> I top: <ltest> <ltest> |)
j*' L2 j* .L2 | <test> | j*' done j*' done |
<then> <else> | j* top | <body> top: <body>]
jmp done jmp done ||| done: | jmp top <test>]
L2: L2: | |Ldone: Cone J* top
<else> <then> | | ek |
done: done: | | |

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Lesson Summary (3/3)

Memory

+» Switch statements can be implemented using
jump tables and indirect jump instructions

" Jump tables are arrays of pointers to code blocks

Code —

" |ndirect jump jumps to address stored somewhere in Blocks

memory instead of target specified in instruction

Jump table
switch (x) { .section .rodata
case 1: <code> break; L4.a11gn 8
case 2 <coje> break : : .quad .L9 # x =0 0
EEG 28 SEeRER REELE cmpq $7, %rdi .quad .L8 # x =1 1
case >: ja .L9 # default .quad .L7 # x = 2 2
case 6: <code> break; jmp *.L4(,%rdi,8) .quad .L1@ # x = 3 3
case 7: <code> break; .quad .L9 # x =4 4
default: <code> .quad .L5 # x =5 5
.quad .L5 #x =6 6
}
.quad .L3 #x =7 7

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Lesson Q&A

+ Learning Objectives:

= Without executing, describe the overall purpose of snippets of x86-64 assembly
code containing arithmetic, if-else statements, and/or loops.

+» What lingering questions do you have from the lesson?

" Chat with your neighbors about the lesson for a few minutes to come up with
guestions

X86-64 Programming || —

Practice

CSE351, Winter 2024

YA UNIVERSITY of WASHINGTON

Polling Question (1/2)
| Register | Usels)

%rdi 15t argument (x)
%rsi 2" argument (y)

%rax return value

e e

B. cmpg %rsi, %rdi

jg L4

C. ttq %rsi, %rdi
jle .L4

D. tékiq %rsi, %rdi
jg L4

L09: x86-64 Programming Ill

XY

x&y

xky

long absdiff(long x, long y) {
long result;
if (x > y)
result = x-y;
else
result = y-x;
return result;

}
absdiff:
X > Vy:

mov(%rdi, %rax
subq %rsi, %rax
ret

.L4: #H X <= y:
movq %rsi, %rax X-y <=0
subq %rdi, %rax
ret less than or eqwal fo

(Te)

10

CSE351, Winter 2024

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Ill

Polling Question (2/2)

+» The following is assembly code for a for-loop; identify the corresponding
parts (Init, Test, Update)
=1 - %eax, X — »rdi, y — %esi

Line
1 mov1l $0, %eax < Iat
g .L2: cmpl %esi, %eax (Test —|:
x —J8e .L4

4 ¢ movslq %eax, %rdx

5 //////,;eaq (%rdi,%rdx,4), %rcx
6 mov1l (%rcx), %edx

7 addl $1, %edx

8 mov 1 %edx, (%rcx)

9 K addl $1, %eax < Update
10 jmp .L2

11 [2L4:

-F()r\(inf_i==() ’

1 <y k) 1++

[P

11

X86-64 Programming || —

Context

YA UNIVERSITY of WASHINGTON

L09: x86-64 Programming Il

| CSE351, Winter 2024

Labels & Jumps in C (goto)

+ C allows goto as means of transferring control (jump)

" Closer to assembly programming style

" Generally considered bad coding style

long absdiff(long x, long y) {
long result;
if (x > y)
result = x-y;
else
result = y-x;
return result;

Condipnal fint ntest = (x <= vy); cmp
»p lif (ntest) goto Else; Jle
result = x-y;
wn Con Ailipndl J~p—goto Done; \)W\P
;Else:’$
J result = y-x;
labely == Done:

(address e.f)

long absdiff_j(long x, long y) {
long result;

return result;

}

13

YA UNIVERSITY of WASHINGTON LO9: x86-64 Programming Ill CSE351, Winter 2024

Labels & Jumps in C (goto)

+ C allows goto as means of transferring control (jump)
" Closer to assembly programming style
" Generally considered bad coding style... listen to Kernighan & Ritchie:

14

YA UNIVERSITY of WASHINGTON

CSE351, Winter 2024

L09: x86-64 Programming Ill

Mainstream ISAs, Revisited

intel.

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

Design CIsC

Type Register—memory
Encoding Variable (1 to 15 bytes)
Branching Condition code

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86-64 Instruction Set

arm

ARM

Designer Arm Holdings
Bits 32-bit, 64-bit
Introduced 1985

Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions; ARMv7 user-
space compatibility.["]

Branching Ceondition code, compare and
branch

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

RISC

RISC-V
Designer University of California,
Berkeley
Bits 32-64-128
Introduced 2010
Design RISC
Type Load-store
Encoding Variable

Endianness Littlel'I[3]

Mostly research
(some traction in embedded)
RISC-V Instruction Set

15

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Discussion Question

+ Discuss the following question(s) in groups of 3-4 students
= | will call on a few groups afterwards so please be prepared to share out
= Be respectful of others’ opinions and experiences

+» We taught you assembly using x86-64; you didn’t have a choice

" What are some of the advantages and drawbacks of this choice?

" What are some possible assumptions we are making about our students or values
we are forcing on our students with this choice?

16

YA UNIVERSITY of WASHINGTON L09: x86-64 Programming Ill CSE351, Winter 2024

Group Work Time

+ During this time, you are encouraged to work on the following:
1) If desired, continue your discussion
2) Work on the homework problems
3) Work on the lab (if applicable)

<« Resources:
® You can revisit the lesson material

= Work together in groups and help each other out
" Course staff will circle around to provide support

17

