Memory & Caches I

CSE 351 Winter 2024

Instructor:

Justin Hsia

Teaching Assistants:

Adithi Raghavan

Aman Mohammed

Connie Chen

Eyoel Gebre

Jiawei Huang

Malak Zaki

Naama Amiel

Nathan Khuat

Nikolas McNamee

Pedro Amarante

Will Robertson

Relevant Course Information

- HW14 due Monday, HW15 due Wednesday
- Lab 3 due next Friday (2/16)
 - Make sure to look at HW14 before starting
- Midterm starts tomorrow (2/8-10)
 - Only private posts on Ed Discussion
 - Staff cannot help you study during the exam window only point you to resources and clarify the questions
 - We will post clarifications and corrections about the exam on Ed as we go

Lesson Summary (1/3)

IEC prefixes are unambiguously powers of 2:

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki
10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi
10 ¹⁸	Exa-	Е	2 ⁶⁰	Exbi-	Ei
10 ²¹	Zetta-	Z	2 ⁷⁰	Zebi-	Zi
10^{24}	Yotta-	Y	2 ⁸⁰	Yobi-	Yi

$$2^{XY} \text{ "things"} = -\begin{bmatrix} Y=0 \rightarrow 1 \\ Y=1 \rightarrow 2 \\ Y=2 \rightarrow 4 \\ Y=3 \rightarrow 8 \\ Y=4 \rightarrow 16 \\ Y=5 \rightarrow 32 \\ Y=6 \rightarrow 64 \\ Y=7 \rightarrow 128 \\ Y=8 \rightarrow 256 \\ Y=9 \rightarrow 512 \end{bmatrix} + - \begin{bmatrix} X=0 \rightarrow \\ X=1 \rightarrow \text{Kibi-} \\ X=2 \rightarrow \text{Mebi-} \\ X=3 \rightarrow \text{Gibi-} \\ X=5 \rightarrow \text{Pebi-} \\ X=6 \rightarrow \text{Exbi-} \\ X=7 \rightarrow \text{Zebi-} \\ X=8 \rightarrow \text{Yobi-} \end{bmatrix} + \text{"things"}$$

Lesson Summary (2/3)

- Memory Hierarchy
 - Successively higher levels contain "most used" data from lower levels
 - Caches are intermediate storage levels used to optimize data transfers between any system elements with different characteristics
 - Exploits temporal and spatial locality:

Lesson Summary (3/3)

- Cache Performance
 - Ideal case: found in cache (cache hit), return requested data immediately
 - Bad case: not found in cache (cache miss), search in next level
 - Bring entire cache block containing requested data into this cache once found
 - Average Memory Access Time (AMAT) = HT + MR × MP
 - Hurt by Miss Rate and Miss Penalty

Lesson Q&A

- Learning Objectives:
 - Describe the memory hierarchy and explain the relationship between cost, size, and access speed of its layers.
 - Analyze how changes [to cache parameters and policies] affect performance metrics such as AMAT
- What lingering questions do you have from the lesson?
 - Chat with your neighbors about the lesson for a few minutes to come up with questions

Polling Questions (1/2)

- Convert the following to or from IEC:
 - 512 Ki-books

■ 2²⁷ caches

- Compute the average memory access time (AMAT) for the following system properties:
 - Hit time of 1 ns
 - Miss rate of 1%
 - Miss penalty of 100 ns

$$AMAT = HT + MR \times MP$$

$$= 1 \text{ ns} + 6.01 (100 \text{ ns})$$

$$= 1 \text{ ns} + 1 \text{ ns}$$

$$AMAT = 2 \text{ ns}$$

(reduced Mem size)

(write better code)

Polling Questions (2/2)

Processor specs: 200 ps clock, MP of 50 clock cycles, MR of 0.02 misses/instruction, and HT of 1 clock cycle

- Which improvement would be best? (overdocking, faster CPU)
 - **A.** 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

CSE351, Winter 2024

AMAT, Revisited

 Average Memory Access Time (AMAT): average time to access memory considering both hits and misses

```
AMAT = Hit time + Miss rate × Miss penalty (abbreviated AMAT = HT + MR × MP)
```

- We called this a cache performance metric
 - This isn't the only metric we could have used!

Metrics in Computing

- Generally, folks care most about <u>performance</u>
 - Energy-efficiency is more important now since the plateau in 2004/2005
 - This is why we have so many specialized chips nowadays
- Really, this is just efficiency making efficient use of the resources that we have
 - Performance: cycles/instruction, seconds/program
 - Energy efficiency: performance/watt
 - Memory: bytes/program, bytes/data structure

Metrics

- What do we do with metrics?
 - We tend to optimize along them!
 - Especially when jobs/funding depend on better performance along some metric
 - See all of Intel under "Moore's Law"
- Sometimes, strange incentives emerge
 - "Minimize the number of bugs on our dashboard"
 - Does it count if we make the bugs invisible?
 - "Make this faster for our demo in a week"
 - Shortcuts might hurt performance at scale
 - "Minimize our average memory access time"
 - What if we add more memory accesses that we know will hit?

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- Let's say that we choose performance/program or performance/program set (i.e., benchmarks):
 - 1. Measure existing performance
 - 2. Come up with a bunch of optimizations that would improve performance
 - 3. Select a few to build into the "next version"

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- Let's say that we choose profit/year or stock price:
 - Success means earning more profit than last year
 - Improvement or optimizations might include:
 - Reduce expenses, cut staff
 - Sell more things or fancier things (e.g., in-app purchases)
 - Make people pay monthly for things they could get for free
 - Increase advertising revenue:

The New Hork Times

Whistle-Blower Says Facebook 'Chooses Profits Over Safety'

Frances Haugen, a Facebook product manager who left the company in May, revealed that she had provided internal documents to journalists and others.

Metrics and Success

- Success is defined along metrics
 - This affects how we measure and optimize
- Let's say that we choose minoritized participation in computing:
 - What does success/participation mean (and dangers)?
 - Women? BIPOC? All minoritized lumped together?
 - Might optimize for one group at the expense of others
 - Taking intro? Passing intro? Getting a degree? Getting a job?
 - Says nothing about retention or participation/decision-making level

Design Considerations

- Regardless of what we build, the way that we define success shapes the systems we build
 - Choose your metrics carefully
 - There's more to choose from than performance (e.g., usability, access, simplicity, agency)
- Metrics are a "heading" (in the navigational sense)
 - Best to reevaluate from time to time in case you're off course or your destination changes

Discussion Questions

- Discuss the following question(s) in groups of 3-4 students
 - I will call on a few groups afterwards so please be prepared to share out
 - Be respectful of others' opinions and experiences
- Let's say your (main) metric for college is to get a 4.0 overall GPA.
 - What are some potential unintended consequences of this metric?
 - What are some other potential metrics you could use for college?

Group Work Time

- During this time, you are encouraged to work on the following:
 - 1) If desired, continue your discussion
 - 2) Work on the homework problems
 - 3) Work on the lab (if applicable)

Resources:

- You can revisit the lesson material
- Work together in groups and help each other out
- Course staff will circle around to provide support