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Sequential Logic : A Review 

! State Minimization (Implication Chart vs Row Matching)

! DataPath vs Control Path

! Reverse Engineering FSM

! FSMs: Mealy vs Moore

! FFs converting one from another and using them to implement
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Algorithmic approach to state minimization

! Goal � identify and combine states that have equivalent behavior

! Equivalent states: 
" same output
" for all input combinations, states transition to same or equivalent states

! Algorithm sketch
" 1. place all states in one set
" 2. initially partition set based on output behavior
" 3. successively partition resulting subsets based on next state transitions
" 4. repeat (3) until no further partitioning is required

⌧states left in the same set are equivalent
" polynomial time procedure
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Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State minimization example

! Sequence detector for 010 or 110 
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( S0 S1 S2 S3 S4 S5 S6 )

( S0 S1 S2 S3 S5 )   ( S4 S6 )

( S0 S3 S5 )   ( S1 S2 )   ( S4 S6 )

( S0 )   ( S3 S5 )   ( S1 S2 )   ( S4 S6 )

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Method of successive partitions
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Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

Minimized FSM

! State minimized sequence detector for 010 or 110 
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symbolic state 
transition table

present next state            output
state 00 01 10 11

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

! Multiple input example
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S0-S1 
S1-S3 
S2-S2 
S3-S4 

S0-S0 
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S2-S2 
S3-S5 
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S4-S0
S5-S5 

S1-S1 
S0-S4 

minimized state table
(S0==S4) (S3==S5)

present next state            output
state 00 01 10 11

S0' S0' S1 S2 S3' 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

Minimized FSM

! Implication chart method
" cross out incompatible states based on outputs
" then cross out more cells if indexed chart entries are already crossed out
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Minimizing incompletely specified FSMs

! Equivalence of states is transitive when machine is fully specified

! But its not transitive when don't cares are present

e.g., state output
S0 � 0 S1 is compatible with both S0 and S2
S1 1 � but S0 and S2 are incompatible
S2 � 1

! No polynomial time algorithm exists for determining best grouping of states 
into equivalent sets that will yield the smallest number of final states
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"puppeteer who pulls the strings"
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Data-path and control

! Digital hardware systems = data-path + control
" datapath: registers, counters, combinational functional units (e.g., ALU),

communication (e.g., busses)
" control: FSM generating sequences of control signals that instructs

datapath what to do next
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state feedback
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Comparison of Mealy and Moore machines

! Mealy machines tend to have less states
" different outputs on arcs (n^2) rather than states (n)

! Moore machines are safer to use
" outputs change at clock edge (always one cycle later)
" in Mealy machines, input change can cause output change as soon as 

logic is done � a big problem when two machines are interconnected �
asynchronous feedback

! Mealy machines react faster to inputs
" react in same cycle � don't need to wait for clock
" in Moore machines, more logic may be necessary to decode state into 

outputs � more gate delays after 


