
CSE 370 – Spring 2001 - Combinational Logic - 1

Sequential Logic : A Review 

! State Minimization (Implication Chart vs Row Matching)

! DataPath vs Control Path

! Reverse Engineering FSM

! FSMs: Mealy vs Moore

! FFs converting one from another and using them to implement

CSE 370 – Spring 2001 - Combinational Logic - 2

Algorithmic approach to state minimization

! Goal � identify and combine states that have equivalent behavior

! Equivalent states: 
" same output
" for all input combinations, states transition to same or equivalent states

! Algorithm sketch
" 1. place all states in one set
" 2. initially partition set based on output behavior
" 3. successively partition resulting subsets based on next state transitions
" 4. repeat (3) until no further partitioning is required

⌧states left in the same set are equivalent
" polynomial time procedure



CSE 370 – Spring 2001 - Combinational Logic - 3

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State minimization example

! Sequence detector for 010 or 110 

S0

S3

S2S1

S5 S6S4

1/00/0

1/0

1/0
0/1

0/01/00/0

1/0
0/0

1/0
0/1

1/0
0/0

CSE 370 – Spring 2001 - Combinational Logic - 4

( S0 S1 S2 S3 S4 S5 S6 )

( S0 S1 S2 S3 S5 )   ( S4 S6 )

( S0 S3 S5 )   ( S1 S2 )   ( S4 S6 )

( S0 )   ( S3 S5 )   ( S1 S2 )   ( S4 S6 )

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Method of successive partitions



CSE 370 – Spring 2001 - Combinational Logic - 5

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

Minimized FSM

! State minimized sequence detector for 010 or 110 

S0

S1�

S3� S4�

X/0

1/0

1/00/1

0/0

X/0

CSE 370 – Spring 2001 - Combinational Logic - 6

symbolic state 
transition table

present next state            output
state 00 01 10 11

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

! Multiple input example

10
01

11

00

00

01

1110

10

01

1100

10
00

11

00

1110

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01



CSE 370 – Spring 2001 - Combinational Logic - 7

S0-S1 
S1-S3 
S2-S2 
S3-S4 

S0-S0 
S1-S1 
S2-S2 
S3-S5 

S0-S1 
S3-S0 
S1-S4 
S4-S5 

S0-S1 
S3-S4 
S1-S0 
S4-S5 

S1-S0 
S3-S1 
S2-S2
S4-S5 

S4-S0
S5-S5 

S1-S1 
S0-S4 

minimized state table
(S0==S4) (S3==S5)

present next state            output
state 00 01 10 11

S0' S0' S1 S2 S3' 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

Minimized FSM

! Implication chart method
" cross out incompatible states based on outputs
" then cross out more cells if indexed chart entries are already crossed out

S1 

S2 

S3 

S4 

S5

S0 S1 S2 S3 S4

CSE 370 – Spring 2001 - Combinational Logic - 8

Minimizing incompletely specified FSMs

! Equivalence of states is transitive when machine is fully specified

! But its not transitive when don't cares are present

e.g., state output
S0 � 0 S1 is compatible with both S0 and S2
S1 1 � but S0 and S2 are incompatible
S2 � 1

! No polynomial time algorithm exists for determining best grouping of states 
into equivalent sets that will yield the smallest number of final states



CSE 370 – Spring 2001 - Combinational Logic - 9

"puppet"

"puppeteer who pulls the strings"
control

data-path

status 
info and 
inputs

control 
signal 
outputs

state

Data-path and control

! Digital hardware systems = data-path + control
" datapath: registers, counters, combinational functional units (e.g., ALU),

communication (e.g., busses)
" control: FSM generating sequences of control signals that instructs

datapath what to do next

CSE 370 – Spring 2001 - Combinational Logic - 10
state feedback

inputs

outputsreg

combinational
logic for
next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

Comparison of Mealy and Moore machines

! Mealy machines tend to have less states
" different outputs on arcs (n^2) rather than states (n)

! Moore machines are safer to use
" outputs change at clock edge (always one cycle later)
" in Mealy machines, input change can cause output change as soon as 

logic is done � a big problem when two machines are interconnected �
asynchronous feedback

! Mealy machines react faster to inputs
" react in same cycle � don't need to wait for clock
" in Moore machines, more logic may be necessary to decode state into 

outputs � more gate delays after 


