Karnaugh Maps

- What was the idea in doing simplification? Well, one of the ideas was to try to apply the unification theorem $\left(\mathrm{AB}+\mathrm{AB}^{\prime}=\mathrm{A}\right)$.
- What we're looking for then are terms that differ only in one variable.
- This can be difficult to do when there are many terms and many variables. Let's try to see if we there is a graphical method that makes it easier.

Implicants

- An on-set member of any combinable group basically a product term e.g. A'BC,A,BC
- Prime Implicant: cannot combine with other to eliminate a literal
- Each corresponds to Prod term in min S-o-P
- Essential Prime Implicant: If it is the only PI covering a particular minterm

Example of Implicants

- Implicants
- Six Prime Implicants: $A^{\prime} B^{\prime} D, B^{\prime}, A C, A^{\prime} C^{\prime} D$, AB, ${ }^{\prime}{ }^{\prime} \mathrm{CD}$
- Essential PI: AC,BC'
- $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}+\mathrm{BC}{ }^{\prime}+\mathrm{AC}$

Detecting XOR on K-maps for 2 vars

So, what we are looking for are diagonals

Detecting XOR on K-maps for 3 vars

A xor B:	${ }_{\text {C }} \mathrm{C}$	00	01	11	10
Have alternate	0	0	1	0	1
columns of 1's	1	0	1	0	1

A xor C:
Have diagonal groups of 1's

AB	00	01	11	10
C				
0	0	0	1	1
1	1	1	0	0

Detecting XOR on K-maps for 4 vars

A xor B: Have alternate columns of 1's	$\begin{gathered} \mathrm{AB} \\ \mathrm{CD} \end{gathered}$	00	01	11	10
	00	0	1	0	1
	01	0	1	0	1
	11	0	1	0	1
	10	0	1	0	1
A xor C: Have diagonal groups of 1's	AB	00	01	11	10
	CD				
	00	0	0	1	1
	01	0	0	1	1
	11	1	1	0	0
	10	1	1	0	0

Kmaps Example

