BCD to 7－segment display controller

H Understanding the problem
© input is a 4 bit bcd digit（A，B，C，D）
© output is the control signals for the display（7 outputs C0－C6）
H Block diagram

5／2／2001

Formalize the problem

\＆Truth table
囚 show don＇t cares
\＆Choose implementation target
囚 if ROM，we are done
® don＇t cares imply PAL／PLA may be attractive
\＆Follow implementation procedure
囚 minimization using K－maps

A	B	C	D	C0	C1 1	C2	C3	C4 4	C5	C6
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	-	-	-	-	-	-	-	-
1	1	-	-	-	-	-	-	-	-	-

Implementation as minimized sum-of-products

It 15 unique product terms when minimized individually

$$
\begin{aligned}
& C 0=A+B D+C+B^{\prime} D^{\prime} \\
& C 1=C^{\prime} D^{\prime}+C D+B^{\prime} \\
& C 2=B+C^{\prime}+D \\
& C 3=B^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C \\
& C 4=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime}+B C^{\prime} \\
& C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B+C D^{\prime}+B C^{\prime}+B^{\prime} C \\
& C 6=A
\end{aligned}
$$

Implementation as minimized S-o-P (cont'd)

\& Can do better
囚 9 unique product terms (instead of 15)
囚 share terms among outputs
© each output not necessarily in minimized form

$C 0=A+B D+C+B^{\prime} D^{\prime}$
$C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$\mathrm{C4}=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{C} \mathrm{D}^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$

$$
\begin{aligned}
& C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A \\
& C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime} \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}+D^{\prime} D \\
& C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime} \\
& C 4=B^{\prime} D^{\prime}+B C D^{\prime} \\
& C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}+B C D^{\prime}+A \\
& C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A
\end{aligned}
$$

PLA implementation

5／2／2001 CSE 370 －Spring 2001 －Combinational Implementation－ 5

PAL implementation

H Limit of 4 product terms per output
® decomposition of functions with larger number of terms
囚 do not share terms in PAL anyway
（although there are some with some shared terms）

$$
\begin{aligned}
& C 2=B+C^{\prime}+D \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime} \\
& C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+W \text { need another input and another output } \\
& W=C D+B C D^{\prime} \longleftarrow
\end{aligned}
$$

囚 decompose into multi－level logic（hopefully with CAD support）
区find common sub－expressions among functions

$$
\begin{aligned}
& \text { C0 = C3 + A' B X' + A D Y } \\
& \mathrm{C} 1=\mathrm{Y}+\mathrm{A}^{\prime} \mathrm{C} 5^{\prime}+\mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{C} 6 \\
& C 2=C 5+A^{\prime} B^{\prime} D+A^{\prime} C D \quad X=C^{\prime}+D^{\prime} \\
& \mathrm{C} 3=\mathrm{C} 4+\mathrm{BDC5}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{X}^{\prime} \quad \mathrm{Y}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \\
& C 4=D^{\prime} Y+A^{\prime} C D^{\prime} \\
& C 5=C^{\prime} C 4+A Y+A^{\prime} B X \\
& \mathrm{C} 6=\mathrm{AC4}+\mathrm{C} \mathrm{C} 5+4^{\prime} \mathrm{C} 5+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}
\end{aligned}
$$

Production line control

\％Rods of varying length（＋／－10\％）travel on conveyor belt
囚 mechanical arm pushes rods within spec（＋／－5\％）to one side
囚 second arm pushes rods too long to other side
囚 rods that are too short stay on belt
囚 3 light barriers（light source＋photocell）as sensors
囚 design combinational logic to activate the arms
H Understanding the problem
囚 inputs are three sensors
囚 outputs are two arm control signals
囚 assume sensor reads＂ 1 ＂when tripped，＂ 0 ＂otherwise
© call sensors A, B, C

Sketch of problem

H Position of sensors
囚 A to B distance $=$ specification -5%
囚 A to C distance $=$ specification $+5 \%$

Formalize the problem

\& Truth table
囚 show don't cares

A	B	C	Function
0	0	0	do nothing
0	0	1	do nothing
0	1	0	do nothing
0	1	1	do nothing
1	0	0	too short
1	0	1	don't care
1	1	0	in spec
1	1	1	too long

logic implementation now straightforward
just use three 3-input AND gates
"too short" = AB'C'
(only first sensor tripped)
"in spec" = A B C'
(first two sensors tripped)
"too long" = A B C
(all three sensors tripped)

