
CSE 370 - Winter 200 - Hardware Description Languages - 1

Hardware description languages

! Describe hardware at varying levels of abstraction

! Structural description
" textual replacement for schematic
" hierarchical composition of modules from primitives

! Behavioral/functional description
" describe what module does, not how
" synthesis generates circuit for module

! Simulation semantics

CSE 370 - Winter 200 - Hardware Description Languages - 2

HDLs

! Abel (circa 1983) - developed by Data-I/O
" targeted to programmable logic devices
" not good for much more than state machines

! ISP (circa 1977) - research project at CMU
" simulation, but no synthesis

! Verilog (circa 1985) - developed by Gateway (now part of Cadence)
" similar to Pascal and C
" delays is only interaction with simulator
" fairly efficient and easy to write
" IEEE standard

! VHDL (circa 1987) - DoD sponsored standard
" similar to Ada (emphasis on re-use and maintainability)
" simulation semantics visible
" very general but verbose
" IEEE standard

CSE 370 - Winter 200 - Hardware Description Languages - 3

Verilog

! Supports structural and behavioral descriptions

! Structural
" explicit structure of the circuit
" e.g., each logic gate instantiated and connected to others

! Behavioral
" program describes input/output behavior of circuit
" many structural implementations could have same behavior
" e.g., different implementation of one Boolean function

! We�ll only be using behavioral Verilog
" rely on schematic for structural constructs

CSE 370 - Winter 200 - Hardware Description Languages - 4

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

Structural model

CSE 370 - Winter 200 - Hardware Description Languages - 5

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

assign #2 out = in1 & in2;

endmodule

Simple behavioral model

! Continuous assignment

delay from input change
to output change

CSE 370 - Winter 200 - Hardware Description Languages - 6

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1 or in2) begin
#2 out = in1 & in2;

end

endmodule

Simple behavioral model

! always block

simulation register -
keeps track of
value of signal

specifies when block is executed
ie. triggered by which signals

CSE 370 - Winter 200 - Hardware Description Languages - 7

module stimulus (a, b);
output a, b;
reg [1:0] cnt;

initial begin
cnt = 0;
repeat (4) begin
#10 cnt = cnt + 1;
$display ("@ time=%d, a=%b, b=%b, cnt=%b",
$time, a, b, cnt); end

#10 $finish;
end

assign a = cnt[1];
assign b = cnt[0];

endmodule

Driving a simulation

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

CSE 370 - Winter 200 - Hardware Description Languages - 8

Complete Simulation

! Instantiate stimulus component and device to test in a schematic

CSE 370 - Winter 200 - Hardware Description Languages - 9

module Compare1 (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endmodule

Comparator Example

CSE 370 - Winter 200 - Hardware Description Languages - 10

Hardware Description Languages vs.
Programming Languages

! Program structure
" instantiation of multiple components of the same type
" specify interconnections between modules via schematic
" hierarchy of modules (only leaves can be HDL in DesignWorks)

! Assignment
" continuous assignment (logic always computes)
" propagation delay (computation takes time)
" timing of signals is important (when does computation have its effect)

! Data structures
" size explicitly spelled out - no dynamic structures
" no pointers

! Parallelism
" hardware is naturally parallel (must support multiple threads)
" assignments can occur in parallel (not just sequentially)

