Boolean algebra

- Last lecture
- Binary numbers
- Base conversion
- Number systems
\boldsymbol{K} Twos-complement
- A / D and D / A conversion
- Today's lecture
- Boolean algebra

KAxioms
\boldsymbol{K} Useful laws and theorems
\boldsymbol{k} Simplifying Boolean expressions

Combinational versus sequential

- Combinational: Memoryless
- Apply fixed inputs A, B
- Wait for clock edge
- Observe C
- Wait for another clock edge
- Observe C again: C will stay the same

- Sequential: With Memory
- Apply fixed inputs A, B
- Wait for clock edge
- Observe C
- Wait for another clock edge
- Observe C again: C may be different

CSE370, Lecture 3

Boolean algebra

- A Boolean algebra comprises..
- A set of elements B
- Binary operators $\{+, \bullet\}$
- A unary operation $\{$ ' $\}$
- ...and the following axioms
- 1. The set B contains at least two elements $\{a b\}$ with $a \neq b$

2. Closure: $\quad a+b$ is in B

- 3. Commutative:
- 4. Associative:
- 5. Identity:

6. Distributive: $\quad a+0=a \quad a+(b a)=(a)$
7. Complane $a+(b \bullet c)=$

CSE370, Lecture 3
$a \bullet b$ is in B
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \bullet b) \cdot c$
$a \bullet 1=a$
$a \bullet(b+c)=(a \bullet b)+(a \cdot c)$
$a \cdot a '=0$

Digital (binary) logic is a Boolean algebra

- Substitute
- $\{0,1\}$ for B
- AND for -
- OR for +
- NOT for '
- All the axioms hold for binary logic
- Definitions
- Boolean function
\boldsymbol{K} Maps inputs from the set $\{0,1\}$ to the set $\{0,1\}$
- Boolean expression
\boldsymbol{L} An algebraic statement of Boolean variables and operators

Logic functions and Boolean algebra

- Any logic function that is expressible as a truth table can be written in Boolean algebra using,$+ \bullet$, and '

X	Y	X^{\prime}	Y^{\prime}	$\mathrm{X} \bullet \mathrm{Y}$	$\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}$	Z
0	0	1	1	0	1	1
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	1	0	1

$Z=(X \cdot Y)+\left(X^{\prime} \cdot Y^{\prime}\right)$

CSE370, Lecture 3

Two key concepts

- Duality (a meta-theorem- a theorem about theorems)
- All Boolean expressions have logical duals
- Any theorem that can be proved is also proved for its dual
- Replace: • with +, + with •, 0 with 1 , and 1 with 0
- Leave the variables unchanged
- de Morgan's Theorem
- Procedure for complementing Boolean functions
- Replace: • with + , + with •, 0 with 1 , and 1 with 0
- Replace all variables with their complements

Useful laws and theorems (con't)		
Absorption:	$X+X \bullet Y=X$	Dual: $X \cdot(X+Y)=X$
Absorption (\#2):	: $\quad\left(X+Y^{\prime}\right) \bullet Y=X \bullet Y$	Dual: $\left(X \bullet Y^{\prime}\right)+Y=X+Y$
de Morgan's:	$(X+Y+\ldots)^{\prime}=X^{\prime} \bullet Y^{\prime} \bullet \ldots$	Dual: $(X \bullet Y \bullet \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$
Duality: (X	$(X+Y+\ldots)^{D}=X \bullet Y \bullet \ldots$	Dual: $(X \cdot Y \cdot \ldots)^{\mathrm{D}}=\mathrm{X}+\mathrm{Y}+\ldots$
Multiplying \& factoring: $(X+Y) \bullet\left(X^{\prime}+Z\right)=X \bullet Z+X^{\prime} \cdot Y$ Dual: $X \cdot Y+X^{\prime} \cdot Z=(X+Z) \bullet\left(X^{\prime}+Y\right)$		
Consensus:$\begin{aligned} (X \cdot Y)+(Y \bullet Z)+ & \left(X^{\prime} \cdot Z\right) \\ \text { Dual } & =X \bullet Y+X+Y) \bullet(Y+Z) \bullet\left(X^{\prime}+Z\right)=(X+Y) \bullet\left(X^{\prime}+Z\right) \end{aligned}$		
CSE370, Lecture 3		10

Proving theorems

- Example 3: Prove the consensus theorem

Complementarity $\quad \mathrm{XY}+\mathrm{YZ}+\mathrm{X}^{\prime} \mathrm{Z}=\mathrm{XY}+\left(\mathrm{X}+\mathrm{X}^{\prime}\right) \mathrm{YZ}+\mathrm{X}^{\prime} \mathrm{Z}$	
Distributive	$=X Y Z+X Y+X^{\prime} Y Z+X^{\prime} Z$
$\boldsymbol{k} U$ se absorption $\{A B+A=A\}$ with $A=X Y$ and $B=Z$	
	$=X Y+X^{\prime} Y Z+X^{\prime} Z$
Rearrange terms	$=X Y+X^{\prime} Z Y+X^{\prime} Z$
$\boldsymbol{k} U$ se absorption $\{A B+A=A\}$ with $A=X{ }^{\prime} Z$ and $B=Y$	
$X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z$	
37, Lecture 3	12

de Morgan's Theorem

- Use de Morgan's Theorem to find complements
- Example: $F=(A+B) \bullet\left(A^{\prime}+C\right)$, so $F^{\prime}=\left(A^{\prime} \bullet B^{\prime}\right)+\left(A \cdot C^{\prime}\right)$

A	B	\mathbf{C}	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}^{\prime}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Logic simplification

- Use the axioms to simplify logical expressions - Why? To use less hardware
- Example: A two-level logic expression
$Z=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$
$=A B^{\prime} C+A B^{\prime} C^{\prime}+A^{\prime} B C+A B C^{\prime}+A B C$ rearrange
$=A B^{\prime}\left(C+C^{\prime}\right)+A^{\prime} B C+A B\left(C^{\prime}+C\right)$ rearrange
$=A B^{\prime}+A^{\prime} B C+A B$
$=A B^{\prime}+A B+A^{\prime} B C \quad$ rearrange $=A\left(B^{\prime}+B\right)+A^{\prime} B C \quad$ distributive $=A+A^{\prime} B C$ comp
$\boldsymbol{\Sigma}$ Use absorption \#2D $\left\{\left(X \cdot Y^{\prime}\right)+Y=X+Y\right\}$ with $X=B C$ and $Y=A$ $Z=A+B C$

Some notation

- Priorities: $\overline{\mathrm{A}} \bullet \mathrm{B}+\mathrm{C}=((\overline{\mathrm{A}}) \bullet \mathrm{B})+\mathrm{C}$
- Variables are sometimes called literals

