Logic gates	
- Last lecture - Boolean algebra \boldsymbol{k} Axioms \boldsymbol{K} Useful laws and theorems \boldsymbol{K} Simplifying Boolean expressions - Today's lecture - Logic gates and truth tables - Implementing logic functions - CMOS switches	
CSE370, Lecture 4	1

Logic gates and truth tables				
- AND $\mathrm{X} \bullet \mathrm{Y}$	XY	$x=-z$	X Y 0 0 0 1 1 0 1 1	Z 0 0 0 1
- OR X+Y		$x-z$	$\begin{array}{ll} X & Y \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	Z 0 1 1 1
- NOT \bar{X}	X^{\prime}	$\mathbf{x - D}-\mathrm{y}$	$\begin{array}{l\|l} X & Y \\ \hline 0 & 1 \\ 1 & 0 \end{array}$	
- Buffer X		$x-1$	X Y 0 0 1 1	
CSE370, Lecture 4				

Definitions

- Schematic: A drawing of interconnected gates
- Net: Wires at the same voltage (electrically connected)
- Netlist: A list of all the devices and connections in a schematic
- Fan-in: The \# of inputs to a gate
- Fan-out: The \# of loads the gate drives

CSE370, Lecture 4

Mapping Boolean expressions to logic gates

- Example: $\mathrm{F}=(\mathrm{A} \bullet \mathrm{B})^{\prime}+\mathrm{C} \cdot \mathrm{D}$

- Example: $\mathrm{F}=\mathrm{C} \bullet(\mathrm{A}+\mathrm{B})^{\prime}$

CSE370, Lecture 4

Example: A binary full adder

Mapping truth tables to logic gates

What is the optimal gate realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
- Reduce the number of inputs?
- Reduce the number of gates?
- Reduce number of gate levels?
- How do we explore the tradeoffs?
- CAD tools
- Logic minimization: Reduce number of gates and complexity
- Logic optimization: Maximize speed and/or minimize power

