Canonical forms

- Last lecture
- Logic gates and truth tables
- Implementing logic functions
- CMOS switches
- Today's lecture
deMorgan's theorem
- NAND and NOR
- Canonical forms
\boldsymbol{K} Sum-of-products (minterms)
\boldsymbol{K} Product-of-sums (maxterms)

CSE370, Lecture 5 1

NAND, NOR, and de Morgan's theorum

(bubbles")
\boldsymbol{k} Coduce bubbles in pairs
K Do

- Example
- AND/OR to NAND/NAND $=\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}$ $=\left[\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\right]$ $=\left[(A B)^{\prime}(C D)^{\prime}\right]^{\prime}$

CSE370, Lecture 5

Converting between forms (con't)

- Example: AND/OR network to NOR/NOR
$Z=A B+C D$
$=\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}$
$=\left[\left(A^{\prime}+B^{\prime}\right)+\left(C^{\prime}+D^{\prime}\right)\right]^{\prime \prime}$
$=\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)\right]^{\prime}\right\}^{\prime}$

CSE370, Lecture 5

Canonical forms

- Canonical forms
- Standard forms for Boolean expressions
- Unique algebraic signatures
- Generally not the simplest forms K Can be minimized
- Derived from truth table
- Two canonical forms
- Sum-of-products (minterms)
- Product-of-sum (maxterms)

Minterms
\bullet Variables appears exactly once in each minterm

- In true or inverted form (but not both)

A	B	C	minterms	F in canonical form:
0	0	0	$A^{\prime} B^{\prime} C^{\prime} \mathrm{mo}$	$F(A, B, C)=\Sigma m(1,3,5,6,7)$
0	0	1	$A^{\prime} B^{\prime} C^{\prime} \mathrm{m} 1$	$=\mathrm{m} 1+\mathrm{m} 3+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 7$
0	1	0	$A^{\prime} \mathrm{AC}^{\prime} \mathrm{m} 2$	$=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$
0	1	1	$A^{\prime} \mathrm{BC}^{\prime} \mathrm{m} 3$	
1	0	0	$A^{\prime} \mathrm{C}^{\prime} \mathrm{C} 4$	
1	0	1	$A^{\prime} B^{\prime} \mathrm{C}$ m5	canonical form \rightarrow minimal form $F(A, B, C)=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime}$
1	1	0	ABC' m6	$F(A, B, C)=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime}$
1	1	1 sh		$\begin{aligned} & =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\ & =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\ & =A B C^{\prime}+C \\ & =A B+C \end{aligned}$

Maxterms

SOP, POS, and de Morgan's theorem
Sum-of-products

- $F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
Apply de Morgan's to get POS
- $\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $\left(F^{\prime}\right){ }^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
- $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$
- Product-of-sums
- $\mathrm{F}^{\prime}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$
- Apply de Morgan's to get SOP
- $\left(F^{\prime}\right)^{\prime}=\left(\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)\right)^{\prime}$
- $F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C$

Conversion between canonical forms

- Minterm to maxterm
- Use maxterms that aren't in minterm expansion
- $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(1,3,5,6,7)=\Pi \mathrm{M}(0,2,4)$
- Maxterm to minterm
- Use minterms that aren't in maxterm expansion
- $F(A, B, C)=\Pi M(0,2,4)=\sum m(1,3,5,6,7)$
- Minterm of F to minterm of F^{\prime}
- Use minterms that don't appear
- $F(A, B, C)=\sum m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\sum m(0,2,4)$
- Maxterm of F to maxterm of F^{\prime}
- Use maxterms that don't appear
- $F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\Pi M(1,3,5,6,7)$

CSE370, Lecture 5

