

Logic-function simplification

- Key tool: The uniting theorem $\rightarrow \mathrm{A}\left(\mathrm{B}^{\prime}+\mathrm{B}\right)=\mathrm{A}$
- The approach:
- Find subsets of the ON-set where some variables don't change (the A's above) and others do (the B's above)
- Eliminate the changing variables (the $\mathrm{B}^{\prime} \mathrm{s}$)

[^0]Mapping truth tables onto Boolean cubes

- ON set = solid nodes
- OFF set = empty nodes

M-dimensional cubes in n-dimensional space

- In a 3-cube (three variables):
- A 0-cube (a single node) yields a term in 3 literals
- A 1-cube (a line of two nodes) yields a term in 2 literals
- A 2-cube (a plane of four nodes) yields a term in 1 literal
- A 3 -cube (a cube of eight nodes) yields a constant term "1"
(anser
CSE370, Lecture 6
6

K-map minimization (con't)

- Obtain the complement by covering 0s with subcubes

$F(A, B, C)=\sum m(0,4,5,7)$
$=B^{\prime} C^{1}+A C$
$F^{\prime}(A, B, C)=\Sigma m(1,2,3,6)$
$=A^{\prime} C+B C^{\prime}$
CSE370, Lecture 6

K-map minimization: 4 variables
Minimize $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{m}(0,2,3,5,6,7,8,10,11,14,15)$

- Find the least number of subcubes, each as large as possible,
that cover the ON -set
CSE370, Lecture 6

[^0]: CSE370, Lecture 6

