CSE 370 Spring 2006 Introduction to Digital Design

Lecture 2: Binary Number Systems

Last Lecture

- Course Overview
- The Digital Age

Today

- Binary numbers
- Base conversion
- Negative binary numbers
- Switches/CMOS

Administrivia

Make sure

- Signed up to the mailing list

Homework

- Will be assigned on Friday prior to due date
(so that it can haunt you over the weekend!)
■ Homework guru: Adrienne Wang (axwang@cs)
Office hours: W 3-5pm in CSE 218

Office hours

- Benjamin Ylvisaker (ben8@cs)

Office hours: Th 1:30-3:30 in CSE 003

Digital

Digital $=$ Discrete	Dec	BCD Bin
■ Decimal digits	0	0000
DNA nucleotides CATG U	1	0001
Binary codes	2	0010
■symbols mapped to bits	3	0011
Digital Computers	4	0100
■ I/O is digital	5	0101
■ ASCII, decimal, binary, etc.	6	0110
Internal representation	7	0111
\square binary	8	1000
	9	1001

Number Systems

Bases In This Class

■ Binary (2), Octal (8), Decimal (10), Hexadecimal(16)

- Positional numbering systems ("significant digits")

$$
\begin{aligned}
& 101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=4+0+1=5_{10} \\
& 67_{8}=6 \times 8^{1}+7 \times 8^{0}=48+7=5510 \\
& A B_{16}=10 \times 16^{1}+11 \times 16^{6}=160+11=17110 \\
& 41.7_{8}=4 \times 8^{1}+1 \times 8^{0}+7 \times 8^{-1}=32+1+7 \times 8^{-1}=33.875_{10}
\end{aligned}
$$

Adding, Subtracting "There are 10 kinds of people in the world-those who understand binary numbers, and those who don't."

$0+0$	$=0$	
$0+1$	$=1$	
111	11	
$1011_{2} 1+0$	$=1$	52_{16}
$+1110_{2}$	carry $1+\mathrm{AF}_{16}$	$\frac{-00101_{2}}{10116}$

Conversions

Binary to Octal and Hexadecimal

$$
\begin{aligned}
& 1011011001_{2}=101 \underbrace{011} \underbrace{001}_{8+4+1}=13318 \\
& 1011011001_{2}=10 \underbrace{1101}_{8} \underbrace{1001}_{8}=2 D 9_{16}
\end{aligned}
$$

Octal and Hexadecimal to Binary

401_{8}	$=$4 0 1 100 000 001 B 1 0$=100000001_{2}$
$B 10_{16}$	$=101100010000=101100010000_{2}$

Negative Numbers

E Negative binary numbers?

- Historically

■ sign/magnitude
■ ones-complement
■ twos-complement

- For all three:
\square most significant bit (mst) is the sign
■ $0=$ positive 1=negative

- twos-complement universally most used $\begin{gathered}\mathrm{sign}^{2} \text { bit }\end{gathered}$
\square simplifies arithmetic

Decimal to Others

Decimal to Binary

$$
\begin{aligned}
58 / 2 & =29 \text { remainder } 0 \\
29 / 2 & =14 r 1 \\
14 / 2 & =7 r 0 \\
7 / 2 & =3 r 1 \\
3 / 2 & =1 r 1 \\
1 / 2 & =0 r 1 \quad 111010_{2}
\end{aligned}
$$

- Why does this work?

$$
\begin{aligned}
& 111010 / 2_{10}=11101 \mathrm{rem} 0 \\
& 11101 / 210=1110 \mathrm{rem} 1
\end{aligned}
$$

Sign/Magnitude

- most significant bit is sign

■ 0= positive, 1=negative
\square remaining bits are magnitude

$$
0101_{2}=+S_{10}
$$

$$
\underline{1101}_{2}=-5_{10}
$$

■ Problem 1: two zeros!

$$
0000_{2}=0_{10} \text { and } 1000_{2}=-0_{10}=0_{10}
$$

- Problem 2: arithmetic is messy (hard to implement)

$$
\begin{array}{cc}
4_{10}=0100_{2} \\
+3_{10}=0011_{2} \\
\hline+7_{10} 0 \mid 11_{2}=+7_{10} & \frac{4_{10}=0100_{2}}{3_{10}=1011_{2}} \quad \begin{array}{l}
1111
\end{array}=-7_{10}
\end{array} \begin{aligned}
& -4_{10}=0100_{2} \\
& +3_{10}=1011_{2} \\
& \hline 11111=-7,0
\end{aligned}
$$

Ones-Complement

- most significant bit is sign

■0=positive, $1=$ negative
E negative number is positive numbers bitwise complement

$$
\begin{aligned}
3_{10} & =00112 \\
-3_{10} & =1100_{2}
\end{aligned}
$$

- Problem 2: arithmetic is clean (add carry)

$$
\begin{aligned}
& \begin{array}{rll}
4_{10}=0100_{2} \\
+3_{10}=0011_{2}
\end{array}+\begin{array}{r}
4_{10}=0100_{2} \\
+7_{10}=0111
\end{array}+\begin{array}{l}
-3_{10}=1100_{2} \\
+\underbrace{10000}_{10} \\
+\frac{1011_{2}}{1001} \\
+3_{10}=0011_{2}
\end{array} \\
& \text { — Problem 1: still two zeros! } \\
& 0000_{2}=0_{10} \text { and } 1111_{2}=-0_{10}=0_{10} \\
& 0001_{2}=1
\end{aligned}
$$

Twos-Complement

- most significant bit is sign

```
min}-8\mathrm{ max }+
```


■ 0=positive, 1=negative

- negative number is bitwise complement plus 1

$$
\begin{array}{r}
3_{10}=0011_{2} \\
-3_{10}=1101_{2} \\
11002+0001_{2}
\end{array}
$$

Twos-Complement Exercise

test your skills convert 1_{10} and -5_{10} to 4 bit twos-compelemnt binary and then add them

$$
\begin{array}{r}
1_{10}= \\
-5_{10}= \\
\hline
\end{array}
$$

Twos-Complement Overflow

■ Numbers may add out of range (overflow)

Twos-Complement Overflow

■ Numbers may add out of range (overflow)

Last two carry bits: $\mathrm{c}_{\text {last }}$ and $\mathrm{c}_{\text {last }}$
Overflow: f

$\mathrm{c}_{\text {last }}$	$\mathrm{c}_{\text {last }}$	f
0	0	0
0	1	1
1	0	1
1	1	0

Twos-Complement Misc

- sign extension

$$
\begin{aligned}
& +6_{10}=0110_{2} \\
& -6_{10}=1001_{2} \\
& \square \text { extend to eight bits (a byte): } \\
& +6_{10}=00000110_{2} \\
& -6_{10}=\mathbf{1 1 1 1 1 0 0 1}_{2}
\end{aligned}
$$

- different binary numbers have different values
- $11001=2 S_{10}$ unsigned
- $11001=-910$ sign/magnitude
$\square 11001=-610$ ones-complement $0110=+6$
■ $11001=-710$ twos-complement
The weird number: $111001_{2}=-8$

Machine Independent?

■ HAKMEM Item 154 (Bill Gosper)
The myth that any given programming language is machine independent is easily exploded by computing the sum of powers of 2 .

If the result loops with period = 1 with sign +, you are on a sign-magnitude machine. If the result loops with period $=1$ at -1 , you are on a twos-complement machine. If the result loops with period >1, including the beginning, you are on a onescomplement machine.
If the result loops with period > 1, not including the beginning, your machine isn't binary -- the pattern should tell you the base.
If you run out of memory, you are on a string or Bignum system.
If arithmetic overflow is a fatal error, some fascist pig with a read-only mind is trying to enforce machine independence. But the very ability to trap overflow is machine dependent.

$$
\text { DELETED Proves universe }=\text { twos complot }
$$

Switches

■ Implementing a simple circuit (arrow shows action if wire changes to " 1 "):

close switch (if A is " 1 " or asserted) and turn on light bulb (Z)

open switch (if A is " 0 " or unasserted) and turn off light bulb (Z)
$Z \equiv A$

Switches

■ Compose switches into more complex ones (Boolean functions):

Switching Networks

■ Switch settings determine whether a conducting network to a light bulb
$■$ Larger computations?
E Use a light bulb (output) to set other switches (input)
E Example: Mechanical relay

MOS Transistors

■ MOS transistors have three terminals: drain, gate, and source
E Act as switches: if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals.

n-channel
open when voltage at G is low
closes when:
voltage $(G)>$ voltage $(S)+\varepsilon$

p-channel closed when voltage at G is low opens when: voltage(G) < voltage $(\mathrm{S})-\varepsilon$

Two Input Networks

what is the
relationship
between x, y and z ?

MOS Networks

what is the relationship between x and y ?

Your To Do List

- Things Internet

■ Sign up for mailing list

- Things Reading

■ Week 1 reading (on website): pp.1-27, Appendix A, pp.33-46

- Things Homework

■ Homework 1 posted on website (due this Friday)

- Things Laboratory

■ Attend first lab session if you haven't already

