CSE 370 Spring 2006 Introduction to Digital Design

Lecture 2: Binary Number Systems

Last Lecture

- Course Overview
- The Digital Age

Today

- Binary numbers
- Base conversion
- Negative binary numbers
- Switches/CMOS

Administrivia

Make sure

■ Signed up to the mailing list

Homework

- Will be assigned on Friday prior to due date (so that it can haunt you over the weekend!)
- Homework guru: Adrienne Wang (axwang@cs) Office hours: W 3-5pm in CSE 218

Office hours

■ Benjamin Ylvisaker (ben8@cs)
Office hours: Th 1:30-3:30 in CSE 003

Digital

Digital = Discrete

- Decimal digits
- DNA nucleotides CATG W
- Binary codes
 - symbols mapped to bits

Digital Computers

- I/O is digital
 - ASCII, decimal, binary, etc.
- Internal representation
 - binary

Dec Bin 0000 1 0000 1 0000 2 0000 1 0000 1 0000 5 0101 6 0110 7 0111 8 1000 4 1001

BCD

Number Systems

Bases In This Class

- Binary (2), Octal (8), Decimal (10), Hexadecimal(16)
- Positional numbering systems ("significant digits")

$$101_{2} = |x|^{2} + 0 \times 2^{1} + |y|^{2} = 4 + 0 + 1 = 5_{10}$$

$$67_{8} = 6 \times 8^{1} + 7 \times 8^{2} = 48 + 7 = 55_{10}$$

$$AB_{16} = |0 \times 16^{1} + |1 \times |6^{2} = |66 + 1| = |71_{16}|$$

$$41.7_{8} = 4 \times 8^{1} + |x|^{2} + 7 \times 8^{-1} = 32 + 1 + 7 \times 8^{-1} = 33.875_{10}$$

Adding, Subtracting "There are 10 kinds of people in the world—those who understand binary numbers, and those who don't."

Conversions

Binary to Octal and Hexadecimal

$$1011011001_{2} = \frac{1001001}{1001000} = 1331_{8}$$

$$1011011001_{2} = 1001000 = 1331_{8}$$

$$\frac{1011011001_{2}}{8+4+1} = 2001_{16}$$

Octal and Hexadecimal to Binary

Negative Numbers

- Negative binary numbers?
- Historically
 - sign/magnitude
 - ones-complement
 - twos-complement
- For all three:
- most significant bit (msb) is the sign

- twos-complement universally most used
- simplifies arithmetic

Decimal to Others

Decimal to Binary

Decimal to Octal

$$58/2 = 29$$
 remainder 0 $58/8 = 7 \cdot 2$
 $29/2 = 14 \cdot 1$
 $14/2 = 7 \cdot 0$
 $7/2 = 3 \cdot 1$
 $3/2 = 1 \cdot 1$
 $1/2 = 0 \cdot 1$
 1110102

■ Why does this work?

$$||1010/2|_{0} = ||10|| \text{ rem } 0$$

 $||101|_{20} = ||10|| \text{ rem } |$

Sign/Magnitude

4 bits

may +7

min -y

- most significant bit is sign
 - 0=positive, 1=negative
- remaining bits are magnitude

$$0101_2 = +5_{10}$$
 $1101_2 = -5_{10}$

■ Problem 1: two zeros!

$$0000_2 = 0_{10}$$
 and $1000_2 = -0_{10} = 0_{10}$

Problem 2: arithmetic is messy (hard to implement)

Ones-Complement

- most significant bit is sign
 - 0=positive, 1=negative
- negative number is positive numbers bitwise complement

$$3_{10} = 0011_2$$

 $-3_{10} = 1100_2$

Problem 2: arithmetic is clean (add carry)

Problem 1: still two zeros! $0000_2 = 0_{10}$ and $1111_2 = -0_{10} = 0_{10}$

Twos-Complement

- most significant bit is sign
- M19-8 max +7
- 0=positive, 1=negative
- negative number is bitwise complement plus 1

Twos-Complement Math

■ arithmetic works (drop carry)

$$4_{10} = 0100_{2} \qquad 4_{10} = 0100_{2} \qquad -4_{10} = 1011_{2} \\ +3_{10} = 0011_{2} \qquad -3_{10} = 1101_{2} \qquad +3_{10} = 0011_{2} \\ 7_{10} = 0111_{2} = 7_{10} \qquad 1_{10} \qquad 1_{10} = 0011_{2} \\ 43_{10} = 0011_{2} \qquad -4_{10} = 1000_{2} \\ 43_{10} = 0011_{2} \qquad -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1000_{2} \\ -4_{10} = 1001$$

4=0100

medium

easy

410

-4=1011+000>

Twos-Complement Exercise

test your skills convert $\mathbf{1}_{10}$ and $-\mathbf{5}_{10}$ to 4 bit twos-compelemnt binary and then add them

Twos-Complement Overflow

■ Numbers may add out of range (overflow)

Twos-Complement Overflow

Numbers may add out of range (overflow)

carry bits
$$0100$$
 117000 10000 $+4=0100$ $+4=0110$ $-3=1100$ $+10=1010$ $+1=1000$ $+1=0111$

Last two carry bits: clast and colast

Overflow: f

c _{last}	C _{2last}	f
0	0	0
0	1	1
1	0	1
1	1	0

Twos-Complement Misc

sign extension

$$+6_{10} = 0110_2$$

 $-6_{10} = 1001_2$

extend to eight bits (a byte):

$$+6_{10} = 00000110_2$$

 $-6_{10} = 11111001_2$

different binary numbers have different values

■ 11001 =
$$2S_{io}$$
 unsigned

■
$$11001 = -910$$
 sign/magnitude

■
$$11001 = -610$$
 ones-complement $0110 = +6$

■
$$11001 = -7\iota v$$
 twos-complement

Machine Independent?

■ HAKMEM Item 154 (Bill Gosper)

The myth that any given programming language is machine independent is easily exploded by computing the sum of powers of 2.

If the result loops with period = 1 with sign +, you are on a sign-magnitude machine.

If the result loops with period = 1 at -1, you are on a twos-complement machine.

If the result loops with period > 1, including the beginning, you are on a onescomplement machine.

If the result loops with period > 1, not including the beginning, your machine isn't binary -- the pattern should tell you the base.

If you run out of memory, you are on a string or Bignum system.

If arithmetic overflow is a fatal error, some fascist pig with a read-only mind is trying to enforce machine independence. But the very ability to trap overflow is machine dependent.

DELETED Proves Universe = two completi

Switches

■ Implementing a simple circuit (arrow shows action if wire changes to "1"):

close switch (if A is "1" or asserted) and turn on light bulb (Z)

open switch (if A is "0" or unasserted) and turn off light bulb (Z)

$$Z \equiv A$$

Switches

■ Compose switches into more complex ones (Boolean functions):

Switching Networks

- Switch settings determine whether a conducting network to a light bulb
- Larger computations?
 - Use a light bulb (output) to set other switches (input)

current flowing through coil magnetizes core and causes normally closed (nc) contact to be pulled open

when no current flows, the spring of the contact returns it to its normal position

Transistor Networks

- Relays no more: slow and big
- Modern digital electronics predominately uses CMOS technology
 - MOS: metal-oxcide semiconductor
 - C: complementary (both p and n type transistors arranged so that power is dissipated during switching.)

MOS Transistors

- MOS transistors have three terminals: drain, gate, and source
 - Act as switches: if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals.

n-channel open when voltage at G is low closes when: voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low
opens when:
voltage(G) < voltage (S) - ε

MOS Networks

relationship between x and y?

x y

0 volts
3 volts

what is the

Two Input Networks

Your To Do List

- Things Internet
 - Sign up for mailing list
- Things Reading
 - Week 1 reading (on website): pp.1-27, Appendix A, pp.33-46
- Things Homework
 - Homework 1 posted on website (due this Friday)
- Things Laboratory
 - Attend first lab session if you haven't already