
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 3: Boolean Algebra
Last Lecture

Binary and other bases
Negative binary numbers
Switches/CMOS

Today
Basic Boolean Functions
Boolean Algebra

Switch settings determine whether a conducting network
to a light bulb
Larger computations?

Use a light bulb (output) to set other switches (input)
Example: Mechanical relay

Switching Networks

conducting
path composed

of switches
closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

Relays no more: slow and big
Modern digital electronics predominately uses CMOS
technology

MOS: metal-oxcide semiconductor
C: complementary (both p and n type transistors
arranged so that power is dissipated during
switching.)

Transistor Networks
MOS transistors have three terminals: drain, gate, and
source

Act as switches: if the voltage on the gate terminal is
(some amount) higher/lower than the source terminal
then a conducting path will be established between
the drain and source terminals.

MOS Transistors

n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) – ε

G

S D

G

S D

3v

X

Y 0 volts

x y

3 volts0v

what is the
relationship

between x and y?

0 volts

3 volts

MOS Networks

x y z1 z2

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts

3 volts

3 volts

what is the
relationship

between x, y and z?

3v

X Y

0v

Z1

3v

X Y

0v

Z2

3 volts

3 volts

3 volts

0 volts

3 volts

0 volts

0 volts

0 volts

NAND NOR

Two Input Networks

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1
X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

2 to 1 Boolean Functions

X
Y F

There are 16 possible two bit input one bit output

(General: k input bits, one output bit: 2k such functions)

Costs
0 (F0) and 1 (F15): require 0 switches, directly connect

output to low/high
X (F3) and Y (F5): require 0 switches, output is one of

inputs
X’ (F12) and Y’ (F10): require 2 switches for "inverter" or

NOT-gate
X nor Y (F4) and X nand Y (F14): require 4 switches
X or Y (F7) and X and Y (F1): require 6 switches
X = Y (F9) and X ⊕ Y (F6): require 16 switches

NOTs, NANDs, NORs cost the least

NOT, NOR, NANDS, Oh My!
Can we implement all logic functions from NOT, NOR,

NANDs?
Example: Implementing NOT(X NAND Y)

is the same as implementing (X AND Y)
In fact we can implement a NOT using a NAND or a NOR:

NOT(X) = X NAND X NOT(X)= Y NOR Y

In fact NAND and NOR can be used to implement each
other:

X NAND Y=NOT(NOT(X) NOR NOT(Y))
X NOR Y=NOT(NOT(X) NAND NOT(Y))

To sort through the mess of what we have created we will
construct a mathematical framework: Boolean Algebra

Boolean Algebra
A set of elements B together with a two binary operations,

addition, {+}, and multiplication, {•} which satisfy the axioms:
B contains at least two nonequal elements
(closure) For every a,b in B

a+b is in B a•b is in B
(commutative) For every a,b in B

a+b=b+a a•b=b•a
(associative) For every a,b,c in B

(a+b)+c=a+(b+c) a•(b•c)=(a•b)•c
(identity) There exists identity elements for + and •, such that for

every a in B
a+0=a a•1=a

(distributive) For every a,b,c in B
a+(b•c)=(a+b)•(a+c) a•(b+c)=(a•b)+(a•c)

(complement) For each a in B there exists an element a’ in B, such
that a+a’=1 and a•a’=0

A Boolean Algebra
A Boolean Algebra:

the set B={0,1}
binary operation + = logical OR
binary operation • = logical AND
complement ’ = logical NOT

These satisfy the above axioms

We will often deal with variable representing an element
from the set:

Example: (X+Y)•(X+Z)

Boolean Functions
Boolean Function

function from k input bits to one output bit

All such functions can be represented by a truth table

X1
X2

F

Xk

Xk-1

000

1
1
1
1
0
0
0

X

11
01
10
00
11
01
10

FZY

Boolean Functions and Algebra
All Boolean Functions can be represented by an

expression in Boolean Algebra using ANDs, ORs, and
NOTs:

000

011
101
110

FYX 0000

1
1
1
1
0
0
0

X

111
001
010
000
011
101
110

FZY

Universality of NAND/NOR
All Boolean Functions can be represented by an

expression in Boolean Algebra using ANDs, ORs, and
NOTs.

But we can express AND, OR, and NOT in terms of NAND:

X’ = X NAND X
X AND Y = (X NAND Y)’
X OR Y = (X’ NAND Y’)

But we can express AND, OR, and NOT in terms of NOR:
X’ = X NOR X
X OR Y = (X NOR Y)’
X AND Y = (X’ NOR Y’)

Duality
All Boolean expressions have logical duals
Any theorem that can be proved is also proved for its dual
Replace: • with +, + with •, 0 with 1, and 1 with 0
Leave the variables unchanged

Example: X+0 = 0 is dual to X•1=1

Do not confuse Duality with de’Morgan’s theorem.

Axioms and Theorems
1. Identity: X + 0 = X Dual: X • 1 = X
2. Null: X + 1 = 1 Dual: X • 0 = 0
3. Idempotent: X + X = X Dual: X • X = X
4. Involution: (X')' = X
5. Complementarity: X + X' = 1 Dual: X • X' = 0
6. Commutative: X + Y = Y + X Dual: X • Y = Y • X
7. Associative: (X+Y)+Z=X+(Y+Z) Dual: (X•Y)•Z=X•(Y•Z)
8. Distributive: X•(Y+Z)=(X•Y)+(X•Z) Dual: X+(Y•Z)=(X+Y)•(X+Z)
9. Uniting: X•Y+X•Y'=X Dual: (X+Y)•(X+Y')=X
10. Absorption: X + X • Y = X Dual: X • (X + Y) = X
11. Absorption2: (X + Y’) • Y = X • Y Dual: (X • Y’) + Y = X + Y
12. Factoring: (X + Y) • (X’ + Z) = Dual: X • Y + X’ • Z =

X • Z + X’ • Y (X + Z) • (X’ + Y)

Axioms and Theorems
13. Concensus: (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z
Dual: (X + Y) • (Y + Z) • (X’ + Z) = (X + Y) • (X’ + Z)
14. DeMorgan’s Law: (X + Y + ...)’ = X’ • Y’ • ...
Dual: (X • Y • ...)’ = X’ + Y’ + ...
15. Generalized DeMorgan’s Laws: f’(X1,X2,...,Xn,0,1,+,•) =

f(X1’,X2’,...,Xn’,1,0,•,+)

Notice the DeMorgan is not Duality: Duality is not a way to rewrite
an expression, it is a meta-theorem:

16. Generalized Duality:
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

Proving Theorems
Example 1: Prove the uniting theorem-- X•Y+X•Y'=X

Distributive X•Y+X•Y' = X•(Y+Y')
Complementarity = X•(1)
Identity = X

Example 2: Prove the absorption theorem-- X+X•Y=X
Identity X+X•Y = (X•1)+(X•Y)
Distributive = X•(1+Y)
Null = X•(1)
Identity = X

Exercise
Example 3: Prove the consensus theorem--
(XY)+(YZ)+(X'Z)= XY+X'Z

Exercise
Example 3: Prove the consensus theorem--
(XY)+(YZ)+(X'Z)= XY+X'Z

Complementarity XY+YZ+X'Z = XY+(X+X')YZ + X'Z
Distributive = XYZ+XY+X'YZ+X'Z

Use absorption {AB+A=A} with A=XY and B=Z

= XY+X'YZ+X'Z
Rearrange terms = XY+X'ZY+X'Z

Use absorption {AB+A=A} with A=X'Z and B=Y

XY+YZ+X'Z = XY+X'Z

Use the axioms to simplify logical expressions
– Why? To use less hardware

Example: A two-level logic expression
Z = A'BC + AB'C' + AB'C + ABC' + ABC

= AB'C + AB'C' + A'BC + ABC' + ABC
rearrange

= AB'(C + C') + A'BC + AB(C' + C)
distributive

= AB' + A'BC + AB comp.
= AB' + AB + A'BC rearrange
= A(B' + B) + A'BC distributive
= A + A'BC comp.

Absorption #2D {(X •Y')+Y=X+Y} with X=BC and Y=A

Z = A + BC

Logic Simplification
1-bit binary adder
– Inputs: A, B, Carry-in
– Outputs: Sum, Carry-out

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A'BCin + AB'Cin + ABCin' + ABCin

S = A'B'Cin + A'BCin' + AB'Cin' + ABCin

A
B

Cin Cout
SumAdder

Example: Full Adder

Cout = A'BCin + AB'Cin + ABCin' + ABCin
= A'BCin + AB'Cin + ABCin' + ABCin + ABCin
= A'BCin + ABCin + AB'Cin + ABCin' + ABCin
= (A'+A)BCin + AB'Cin + ABCin' + ABCin
= (1)BCin + AB'Cin + ABCin' + ABCin
= BCin + AB'Cin + ABCin' + ABCin + ABCin
= BCin + AB'Cin + ABCin + ABCin' + ABCin
= BCin + A(B'+B)Cin + ABCin' + ABCin
= BCin + A(1)Cin + ABCin' + ABCin
= BCin + ACin + AB(Cin'+Cin)
= BCin + ACin + AB(1)
= BCin + ACin + AB

associative

idempotent

Simplification of Carry Out

