CSE 370 Spring 2006 Introduction to Digital Design

Lecture 3: Boolean Algebra

Last Lecture

- Binary and other bases
- Negative binary numbers
- Switches/CMOS

Today

- CMOS
- Basic Boolean Functions
- Boolean Algebra

Administrivia

■ Hand in Homework 1: Homework 2 on the web this afternoon.
\square Lab 2 is on the web, you might want to start the tutorial before you labe session.
\square Office hours change:
Adrienne Wang W 1-3pm in 003 Allen Center

Switching Networks

■ Switch settings determine whether a conducting network to a light bulb
$■$ Larger computations?
■ Use a light bulb (output) to set other switches (input)
E Example: Mechanical relay

Transistor Networks

■ Relays no more: slow and big

- Modern digital electronics predominately uses CMOS technology
EMOS: metal-oxcide-semiconductor
■ C: complementary (both p and n type transistors arranged so that power is dissipated during switching.)

MOS Transistors

■ MOS transistors have three terminals: drain, gate, and source
E Act as switches: if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals.

n-channel
open when voltage at G is low
closes when:
voltage $(G)>$ voltage $(S)+\varepsilon$

p-channel closed when voltage at G is low
opens when:

Two Input Networks

MOS Networks

what is the relationship between x and y ?

2 to 1 Boolean Functions

There are 16 possible two bit input one bit output

(General: k input bits, one output bit: $\underline{2}$ k $^{\text {s }}$ such functions)

Costs

$■ 0$ (F0) and 1 (F15): require 0 switches, directly connect output to low/high
$\square X(F 3)$ and $Y(F 5)$: require 0 switches, output is one of \longleftarrow inputs
$■ X^{\prime}$ (F12) and Y^{\prime} (F10): require 2 switches for "inverter" or NOT-gate
$\square X$ nor Y (F4) and X nand Y (F14): require 4 switches
$\square X$ or Y (F7) and X and Y (F1): require 6 switches
$\square X=Y(F 9)$ and $X \oplus Y$ (F6): require 16 switches

NOTs, NANDs, NORs cost the least

NOT, NOR, NANDS, Oh My!

■ Can we implement all logic functions from NOT, NOR, NANDs?
■ Example: Implementing NOT(X NAND Y)
is the same as implementing (X AND Y)
■ In fact we can implement a NOT using a NAND or a NOR:

$$
\operatorname{NOT}(X)=X \text { NAND } X \quad \text { NOT }(X)=Y \text { NOR Y }
$$

■ In fact NAND and NOR can be used to implement each other:

```
X NAND Y=NOT(NOT(X) NOR NOT(Y)) NORS
X NOR Y=NOT( NOT(X) NAND NOT(Y))
```

$■$ To sort through the mess of what we have created we will construct a mathematical framework: Boolean Algebra

Boolean Algebra

■ A set of elements B together with a two binary operations, addition, $\{+\}$, and multiplication, $\{\bullet\}$ which satisfy the axioms:

E B contains at least two nonequal elements $\quad B \times B i \rightarrow B$
E (closure) For every a, b in B

$$
a+b \text { is in } B
$$

$a \bullet b$ is in B

- (commutative) For every a, b in B

$$
a+b=b+a \quad a \cdot b=b \cdot a
$$

- (associative) For every a, b, c in B

$$
(a+b)+c=a+(b+c) \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

E (identity) There exists identity elements for + and \bullet, such that for every a in B

$$
a+0=a \quad a \cdot 1=a
$$

- (distributive) For every a, b, c in B $a+(b \cdot c)=(a+b) \cdot(a+c)$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
- (complement) For each a in B there exists an element a ' in B, such
that $a+a^{\prime}=1$ and $a \cdot a^{\prime}=0$

A Boolean Algebra

■ A Boolean Algebra:

- the set $B=\{0,1\}$
- binary operation + = logical OR
- binary operation $\bullet=$ logical AND
$0+0=0$
$0+1=1$
$1+0=1$
E complement ' = logical NOT
- These satisfy the above axioms $\quad \begin{array}{lll}0.0=0 \\ 0,1=0 \\ 1.0=0\end{array} \quad 1^{\prime}=0$

$$
\begin{aligned}
& 10=0 \\
& 1 \cdot 1=1
\end{aligned}
$$

\square We will often deal with variable representing an element from the set:

Example: $(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z}){ }^{T}$

$$
(X O R Y) A N D(X O R Z)
$$

Boolean Functions

- Boolean Function
- function from k input bits to one output bit

- All such functions can be represented by a truth table

Boolean Functions and Algebra

- All Boolean Functions can be represented by an expression in Boolean Algebra using ANDs, ORs, and NOTs:

$$
\psi^{\text {terms }}
$$

$$
\begin{aligned}
& \begin{array}{c|c|c}
X & Y & Z \\
\hline 0 & F & 0 \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 1 \\
\hline 0 & 1 & 1 \\
\hline & 1 & \alpha \\
\hline & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Universality of NAND/NOR

\square All Boolean Functions can be represented by an expression in Boolean Algebra using ANDs, ORs, and NOTs.

But we can express AND, OR, and NOT in terms of NAND:

```
X' = X NAND X
X AND Y = (X NAND Y)' = (XNAND Y \NAND (XNANDY)
X OR Y = (X' NAND Y')
```

But we can express AND, OR, and NOT in terms of NOR:

$$
\begin{aligned}
& X^{\prime}=X \text { NOR X } \\
& \text { X OR Y = (X NOR Y), }
\end{aligned}
$$

$$
\text { X AND Y = (} X^{\prime} \text { NOR Y') }
$$

Duality

*All Boolean expressions have logical duals
EAny theorem that can be proved is also proved for its dual -Replace: • with +, + with •, 0 with 1 , and 1 with 0 ELeave the variables unchanged

$$
\text { Example: } \begin{array}{cc}
x+0=0 & \text { is dual to } x \cdot 1=1 \\
x+0=x \quad x \cdot 1=x
\end{array}
$$

Do not confuse Duality with de'Morgan's thegrem.

Axioms and Theorems

1. Identity: $\quad X+0=X \quad$ Dual: $X \cdot 1=X$
2. Null:
$x+1=1$
Dual: $X \cdot 0=0$
3. Idempotent: $X+X=X$

Dual: $\mathrm{X} \cdot \mathrm{X}=\mathrm{X}$
4. Involution:
(X^{\prime})' $=\mathrm{X}$
5. Complementarity: $X+X^{\prime}=1$

Dual: $X \cdot X^{\prime}=0$
6. Commutative: $X+Y=Y+X$

Dual: $X \cdot Y=Y \cdot X$
7. Associative: $(X+Y)+Z=X+(Y+Z)$

Dual: $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$
8. Distributive: $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$ Dual: $X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
9. Uniting: $\quad X \cdot Y+X \cdot Y^{\prime}=X$

Dual: $(X+Y) \cdot(X+Y)=X$
10. Absorption: $X+X \cdot Y=X$

Dual: $X \cdot(X+Y)=X$
11. Absorption2: $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$

Dual: $\left(X \cdot Y^{\prime}\right)+Y=X+Y$
12. Factoring: $(X+Y) \cdot\left(X^{\prime}+Z\right)=$

Dual: $X \cdot Y+X \cdot Z=$
$(X+Z) \cdot(X+Y)$

Proving Theorems

$$
F=X \cdot Y+X \cdot Y^{\prime}=X
$$

■ Example 1: Prove the uniting theorem-- $X \cdot Y+X \cdot Y^{\prime}=X$
Distributive $\quad X \cdot Y+X \cdot Y^{\prime}=X \cdot\left(Y+Y^{\prime}\right) \quad$ (8)
Complementarity $\quad=X \cdot(1) \quad Y+Y^{\prime}=$
Identity
=

■ Example 2: Prove the absorption theorem-- $\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$

Identity
Distributive
Null
Identity

$$
\begin{aligned}
X+X \cdot Y & =(X \cdot 1)+(X \cdot Y) \\
& =X \cdot(1+Y) \\
& =X \cdot(1)^{L} \\
& =X
\end{aligned}
$$

13. Concensus: $(X \cdot Y)+(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)=X \cdot Y+X^{\prime} \cdot Z$

Dual: $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=(X+Y) \cdot\left(X^{\prime}+Z\right)$
14. DeMorgan's Law: $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot \ldots$, Dual: $(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$
15. Generalized DeMorgan's Laws: $f^{\prime}(X 1, X 2, \ldots, X n, 0,1,+, \bullet)=$ $\mathrm{f}\left(\mathrm{X} 1^{\prime}, \mathrm{X} 2^{\prime}, \ldots, \mathrm{Xn}, 1,0, \bullet,+\right.$)

Notice the DeMorgan is not Duality: Duality is not a way to rewrite an expression, it is a meta-theorem.
16. Generalized Duality:

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \cdot \bullet\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \cdot,+\right)
$$

Activity

■ Example 3: Prove the consensus theorem$(X Y)+(Y Z)+\left(X^{\prime} Z\right)=X Y+X^{\prime} Z$

Exercise

■ Example 3: Prove the consensus theorem--
$(X Y)+(Y Z)+\left(X^{\prime} Z\right)=X Y+X^{\prime} Z$

Proving Theorems

■ Prove by using "Perfect Induction" also called "Enumeration"
$■$ Cumbersome for very large expressions
Complementarity $\quad X Y+Y Z+X^{\prime} Z=X Y+\left(X+X^{\prime}\right) Y Z+X^{\prime} Z$
Distributive $=X Y Z+X Y+X^{\prime} Y Z+X^{\prime} Z$
\boldsymbol{K} Use absorption $\{A B+A=A\}$ with $A=X Y$ and $B=Z$

$$
=X Y+X^{\prime} Y Z+X^{\prime} Z
$$

Rearrange terms $\quad=X Y+X^{\prime} Z Y+X^{\prime} Z$
\boldsymbol{K} Use absorption $\{A B+A=A\}$ with $A=X^{\prime} Z$ and $B=Y$

$$
X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z
$$

$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
NOR is equivalent to AND with inputs complemented

$$
(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}
$$

IAND is onuivalent to NAND is equivalent to OR with inputs complemented

Logic Simplification

$■$ Use the axioms to simplify logical expressions

- Why? To use less hardware

■ Example: A two-level logic expression

$$
\begin{array}{rlrl}
Z & =A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C & \\
& =A B^{\prime} C+A B^{\prime} C^{\prime}+A^{\prime} B C+A B C^{\prime}+A B C & \text { rearrange } \\
& =A B^{\prime}\left(C+C^{\prime}\right)+A^{\prime} B C+A B\left(C^{\prime}+C\right) & & \text { distributive } \\
& =A B^{\prime}+A^{\prime} B C+A B & & \\
& =A B^{\prime}+A B+A^{\prime} B C & & \text { remp. } \\
& =A\left(B^{\prime}+B\right)+A^{\prime} B C & B^{\prime}+B=1 & \\
& =A+A^{\prime} B C & A \cdot 1=A & \\
\text { distributive } \\
& \text { comp. }
\end{array}
$$

Absorption \#2D $\left\{\left(X \cdot Y^{\prime}\right)+Y=X+Y\right\}$ with $X=B C$ and $Y=A$

$$
Z=A+B C
$$

Example: Full Adder

■ 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

Simplification of Carry Out

```
    Cout = A'BCin + AB'Cin + ABCin' + ABCin
        = A'BCin +AB'Cin +ABCin' + ABCin + ABCin
        = A'BCin +ABCin +AB'Cin + ABCin' + ABCin
        F(A'+A)BCin + AB'Cin + ABCin' + ABCin
associative = (1)BCin + AB'Cin + ABCin' + ABCin
        =BCin +AB'Cin +ABCin' + ABCin + ABCin
        =BCin +AB'Cin +ABCin +ABCin' + ABCin
    = BCin + A(B'+B)Cin + ABCin' + ABCin
    = BCin +A(1)Cin +ABCin' + ABCin
    = BCin + ACin + AB(Cin'+Cin) destrub ut
    = BCin + ACin + AB(1)
    = BCin + ACin + AB 
```

