CSE 370 Spring 2006 Introduction to Digital Design
 Lecture 4: Logic Gates

Last Lecture

- CMOS
- Basic Boolean Functions
- Boolean Algebra

Today

- Logic Gates
- Different Implementations
- Bubbles

Administrivia

■ Homework 2 on the web. Reading on the web (finish Chapter 2)
\square Lab 2 is on the web, you might want to start the tutorial before you lab session this week.

Logic Gates and Truth Tables

$\square A N D \quad X \cdot Y \quad X Y$

■OR $X+Y$

■NOT $\bar{X} \quad$ X

■ Buffer X

$$
x-D-r
$$

$$
\begin{array}{l|l}
\mathrm{X} & \mathrm{Y} \\
\hline 0 & 0 \\
1 & 1
\end{array}
$$

Logic Gates and Truth Tables

Useful Lingo

■ Schematic: A drawing of interconnected logic gates
\square Net: wires that are all at the same voltage

\square Netlist: A list of all the devices and connections in a schematic
\square Fan-in: The number of inputs to a gate

■ Fan-out: The number of outputs of a gate

$\operatorname{fan}^{\text {oin }}=3$ fan out ot two

Boolean Functions to Gates

$\mathrm{NaNO}(\overrightarrow{A, B)} \rightarrow 21$

■ Example: $\mathrm{F}=\mathrm{C} \cdot(\mathrm{A}+\mathrm{B})^{\prime}$,

Boolean Functions to Gates

■ More than one way to map expressions to gates
■e.g., $Z=\underbrace{A^{\prime} \cdot B^{\prime} \cdot(C+D)}=\left(A^{\prime} \cdot\left(B^{\prime} \cdot \frac{(C+D)}{T 2}\right)\right)$

T1

What is the Optimal Implementation?

\square We use the axioms and theorems of Boolean algebra to "optimize" our designs

- Design goals vary
- Reduce the number of inputs?
- Reduce the number of gates?
- Reduce number of gate levels?

■ How do we explore the tradeoffs?

- CAD tools

E Logic minimization: Reduce number of gates and complexity
E Logic optimization: Maximize speed and/or minimize power

Example: A Binary Full Adder

■ 1-bit binary adder

- Inputs: A, B, Carry-in

E Outputs: Sum, Carry-out

Full Adder: Sum

Before Boolean minimization
Sum = A'B'Cin + A'BCin'

$$
+\mathrm{AB}^{\prime} \mathrm{Cin}^{\prime}+\mathrm{ABCin}
$$

After Boolean minimization
Sum $=\underbrace{(A \oplus B) \oplus \mathrm{Cin}^{\prime}}$

Full Adder: Carry

Before Boolean minimization Cout $=A^{\prime} B C i n+A B^{\prime} C i n$ $+\mathrm{ABCin}+\mathrm{ABCin}$

After Boolean minimization Cout $=\underbrace{B C i n+A C i n+A B}$

Preview: A 2-bit Ripple-Carry Adder

In Class Challenge

Implement XOR using NANDs (challenge: fewest)

Different Realizations

Are All Implementations Equivalent?

■ Under the same input stimuli, the three alternative implementations have almost the same waveform behavior

- delays are different
- glitches (hazards) may arise - these could be bad, it depends
- variations due to differences in number of gate levels and structure

■ The three implementations are functionally equivalent

CMOS is Inverting

■ CMOS logic gates are inverting

- Get NAND, NOR, NOT
- Don't get AND, OR, Buffer

X	Y	Z
0	0	1

0	1	1

1	0	1
1	1	0

DeMorgan's Theorem

■ Replace

- \cdot with +, + with •, 0 with 1 , and 1 with 0
- All variables with their complements

■ Example 1: $Z=A^{\prime} B^{\prime}+A^{\prime} C^{\prime} \longleftarrow$

$$
\begin{aligned}
Z^{\prime} & =\left(A^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)^{\prime} \\
& =\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)^{\prime} \cdot\left(\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)^{\prime} \\
= & =(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{A}+\mathrm{C})
\end{aligned}
$$

- Example 2: $Z=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}$

$$
\begin{aligned}
Z^{\prime} & =\left(A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}\right)^{\prime} \\
& =\left(A^{\prime} B^{\prime} C\right)^{\prime} \cdot\left(A^{\prime} B C\right)^{\prime} \cdot\left(A B^{\prime} C\right)^{\prime} \cdot\left(A B C^{\prime}\right)^{\prime} \\
& =\left(A+B+C^{\prime}\right) \cdot\left(A+B^{\prime}+C^{\prime}\right) \cdot\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+C\right)
\end{aligned}
$$

DeMorgan's, NAND, NOR

■DeMorgan's Theorem

$$
\begin{array}{lll}
\text { Standard Form: } & (A+B)^{\prime}=A^{\prime} B^{\prime} & A^{\prime}+B^{\prime}=(A B)^{\prime} \\
\text { Elnverted Form: } & (A+B)=\left(A^{\prime} B^{\prime}\right)^{\prime} & (A B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}
\end{array}
$$

-AND with complemented inputs \equiv NOR
-OR with complemented inputs \equiv NAND
-OR \equiv NAND with complemented inputs and outputs ■AND \equiv NOR with complemented inputs and outputs

Bubble Trouble Continued

■ Example: AND/OR network to NOR/NOR
$Z=A B+C D$
$=\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)$
$=\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime \prime}$
$=\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime}$

Bubble Trouble Continued

■ Example: OR/AND to NAND/NAND

Bubble Trouble Continued

■ Example: OR/AND to NOR/NOR

