
CSE 370 Spring 2006
Introduction to Digital Design
Lecture 5: Canonical Forms

Last Lecture
Logic Gates
Different Implementations
Bubbles

Today
Canonical Forms
Sum of Products
Product of Sums
Boolean Cubes

Administrivia
Homework 2 was modified Monday evening.  See online 

for the modification.  The two problems that were dropped 
will appear on the next homework.

Suppose a light has to be lit by switching on simultaneously n switches. We may 
push any one of the n buttons at any time but we don’t know if they are on or off. 
What is the smallest number of steps necessary to guarantee that we turn the 
light on starting from any initial configuration of the switches?

Puzzle Canonical Forms
Unique forms for Boolean functions
Unique algebraic signatures:
Generically not the simplest

Can be simplified

Two canonical forms
Sum of products
Product of sums



Also called disjunctive normal form (DNF)
Commonly called a minterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

001           011          101          110          111
F = A'B'C + A'BC + AB'C + ABC' + ABC

F' = A'B'C' + A'BC' + AB'C'

minterm

Sum of Products Canonical Form

short-hand notation

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:
F(A,B,C) =  Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A'B'C+A'BC+AB'C+ABC'+ABC

canonical form → minimal form
F(A,B,C) = A'B'C+A'BC+AB'C+ABC+ABC' 

= (A'B'+A'B+AB'+AB)C+ABC’
= ((A' + A)(B' + B))C + ABC'
= ABC' + C
= AB + C

Variables appears exactly once in each minterm
In true or inverted form (but not both)

Minterms

Also called conjunctive normal form (CNF)
Commonly called a maxterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

000                   010                     100
F = (A + B + C) (A + B' + C) (A' + B + C)

F' = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C')

maxterm

Product of Sums Canonical Form

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation

F in canonical form:
F(A,B,C) =  ΠM(0,2,4)

=  M0 • M2 • M4
=  (A+B+C)(A+B'+C)(A'+B+C)

canonical form → minimal form
F(A,B,C) = (A+B+C)(A+B'+C)(A'+B+C)

= (A+B+C)(A+B'+C)•
(A+B+C)(A'+B+C)

= (A + C)(B + C)

Variables appears exactly once in each maxterm
In true or inverted form (but not both)

Maxterms



canonical sum-of-products

F = (A+B+C)(A+B'+C)(A'+B+C)

F = A'B'C+A'BC+AB'C+ABC'+ABC

F

F

A

B

C

canonical product-of-sums

These are not reduced forms for F

Canonical Decompositions of 
F=AB+C

Exercise

A B C F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Express the following binary function in canonical
sum of products and product of sum form:

Sum-of-products
F' = A'B'C' + A'BC' + AB'C'

Apply de Morgan's to get POS
(F')' = (A'B'C' + A'BC' + AB'C')'
F = (A+B+C)(A+B'+C)(A'+B+C)

Product-of-sums
F' = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C')

Apply de Morgan's to get SOP
(F')' = ((A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C'))'
F = A'B'C + A'BC + AB'C + ABC' + ABC

POS, SOP, and DeMorgan
Minterm to maxterm

Use maxterms that aren’t in minterm expansion
F(A,B,C) = ∑m(1,3,5,6,7) = ∏M(0,2,4)

Maxterm to minterm
Use minterms that aren’t in maxterm expansion
F(A,B,C) = ∏M(0,2,4) = ∑m(1,3,5,6,7) 

Minterm of F to minterm of F'
Use minterms that don’t appear
F(A,B,C) = ∑m(1,3,5,6,7)         F'(A,B,C) = ∑m(0,2,4)

Maxterm of F to maxterm of F'
Use maxterms that don’t appear
F(A,B,C) = ∏M(0,2,4)              F'(A,B,C) = ∏M(1,3,5,6,7)

Conversions Between Canonical Forms



canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Alternative Implementations 
of F=AB+C

Waveforms are essentially identical
except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, 
not type of gate or number of inputs to gate)

Waveforms of Four Alternatives

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don’t care" about associated 
output values, can be exploited
in minimization

• Example: binary coded decimal increment by 1
– BCD digits encode the decimal digits 0 – 9 

in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W

Incompletely Specified Functions

Don’t cares and canonical forms
so far, only represented on-set
also represent don’t-care-set
need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 
function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + 
d14 + d15
Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]
Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 •
D14 • D15
Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]

Incompletely Specified Functions:
Notation



Find a minimal sum of products or product of sums realization
exploit don’t care information in the process

Algebraic simplification
not an algorithmic/systematic procedure
how do you know when the minimum realization has been 
found?

Computer-aided design tools
precise solutions require very long computation times, 
especially for functions with many inputs (> 10)
heuristic methods employed – "educated guesses" to 
reduce amount of computation and yield good if not best 
solutions

Hand methods still relevant
to understand automatic tools and their strengths and 
weaknesses
ability to check results (on small examples)

Simplification of Two Level Logic

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

find two element subsets of the ON-set where only 
one variable changes its value – this single varying 
variable can be eliminated and a single product term 
used to represent both elements

Uniting Theorem

1-cube
X

0 1

Visual technique for identifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

Boolean Cubes

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

• Uniting theorem combines two "faces" of a cube
into a larger "face"

• Example:

A

B

11

00

01

10

F

Truth Tables To Boolean Cubes



A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by 
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Binary full-adder carry-out logic

A

B C

000

111

101

Three Variable Example

F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

Three Variable Example

m-dimensional cubes in a n-
dimensional Boolean space
In a 3-cube (three variables):

a 0-cube, i.e., a single node, yields a term in 3 literals
a 1-cube, i.e., a line of two nodes, yields a term in 2 
literals
a 2-cube, i.e., a plane of four nodes, yields a term in 1 
literal
a 3-cube, i.e., a cube of eight nodes, yields a constant 
term "1"

In general,
an m-subcube within an n-cube (m < n) yields a term
with n – m literals

Gray Codes

2-cube

X

Y

11

00

01

10

0 00
1 01
2 11
3 10

A listing of the vertices of the Boolean cube in which we only
move along the edges.

Example:

Example:

3-cube

X

Y Z

000

111

101

0 000
1 001
2 011
3 010
4 110
5 111
6 101
7 100



Gray Codes
Binary reflected Gray codes

Gray code on n bits => Gray code on n+1 bits

Append 0 to Gray code of n bits, followed by appending 1
to the reverse-ordered Gray code of n bits

Gray Code Uses
Use Gray codes to help visualize higher dimensional 

Boolean cubes.

Avoid spurious intermediate states

Example: measuring angles

We want  001⇒110

We get 001⇒000 ⇒010 ⇒110 

Gray codes help avoid synchronizing errors

Suppose a light has to be lit by switching on simultaneously n switches. We may 
push any one of the n buttons at any time but we don’t know if they are on or off. 
What is the smallest number of steps necessary to guarantee that we turn the 
light on starting from any initial configuration of the switches?

Puzzle


