
CSE 370 Spring 2006 Introduction to Digital Design

Lecture 6: Karnaugh Maps

Last Lecture

- Canonical Forms
- Sume of Products
- Product of Sums
- Boolean Cubes

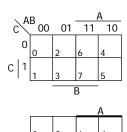
Today

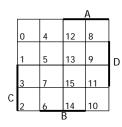
Karnaugh Maps

Administrivia

- Turn in Homework #2.
- Homework #3 available this afternoon on website.
- Office Hours: Firat Kiyak, Th 10-12am, in CSE 003
- Lab 3 available on website.
- Reading: Reading: pp. 93-114, 139-145, Verilog Reference (on website, see master calendar)

QUIZ #1

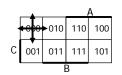

Karnaugh Maps

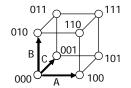

- Flat map of Boolean cube
 - wrap—around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

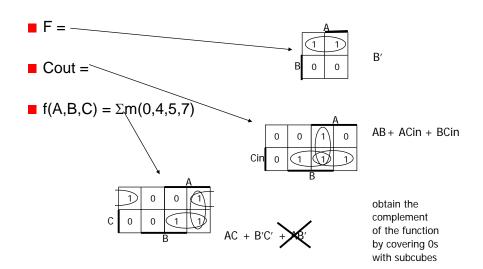
Karnaugh Maps Continued

- Numbering scheme based on Gray-code
 - e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells

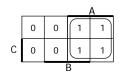


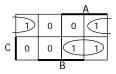


13 = 1101 = ABC'D


Adjacencies in Karnaugh Maps

- Wrap from first to last column
- Wrap top row to bottom row

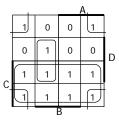


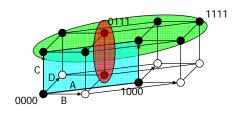

Karnaugh Map Examples


More Karnaugh Map Examples

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$




F' simply replace 1's with 0's and vice versa $F'(A,B,C) = \sum m(1,2,3,6) = BC' + A'C$

A Four Variable Example

 \blacksquare F(A,B,C,D) = Σ m(0,2,3,5,6,7,8,10,11,14,15)

$$F = C + A'BD + B'D'$$

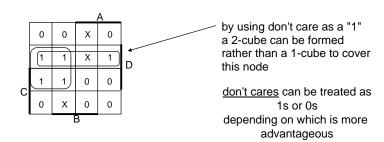
find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh Map Don't Cares

- \blacksquare f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 - without don't cares
 - = f = A'D + B'C'D

		A				
	0	0	Χ	0		
		1	Х	1		
٠	1	1	0	0		
С	0	Х	0	0		
В						

Karnaugh Map Don't Cares


$$\blacksquare$$
 f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

■ f = A'D + B'C'D

without don't cares

■ f =A'D + C'D

with don't cares

Exercise

■ Minimize the function $F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$