CSE 370 Spring 2006 Introduction to Digital Design

Lecture 6: Karnaugh Maps

Administrivia

■Turn in Homework \#2.

-Homework \#3 available this afternoon on website.

Last Lecture
■Office Hours: Firat Kiyak, Th 10-12am, in CSE 003

- Canonical Forms
- Sum) of Products
- Product of Sums
- Boolean Cubes

Today

- Karnaugh Maps

■Lab 3 available on website.

■Reading: Reading: pp. 93-114, 139-145, Verilog
Reference (on website, see master calendar)

QUIZ \#1

Karnaugh Maps

- Flat map of Boolean cube
- wrap-around at edges

E hard to draw and visualize for more than 4 dimensions
E virtually impossible for more than 6 dimensions
■ Alternative to truth-tables to help visualize adjacencies
E guide to applying the uniting theorem

- on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

Karnaugh Maps Continued

Adjacencies in Karnaugh Maps

■ Wrap from first to last column
■ Wrap top row to bottom row

Karnaugh Map Examples

■ $F=$

- Cout $=3$ litesals
- $f(A, B, C)=\Sigma m(0,4,5,7)$

obtain the
complement of the function by covering os with subcubes

Karnaugh Map Examples

More Karnaugh Map Examples


```
\(G(A, B, C)=A\)
```


$F(A, B, C)=\sum m(0,4,5,7)=\underbrace{A C+B^{\prime}}_{q}$
F^{\prime} simply replace 1 's with 0 's and vice versa $F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

A Four Variable Example

$A^{\prime} B D\left(C+C^{\prime}\right)$ subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh Map Don't Cares

$\square \mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,3,5,7,9)+\mathrm{d}(6,12,13)$
— without don't cares
$\mathrm{Lf}=\mathrm{A}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$

(1)

Karnaugh Map Don't Cares

$\square f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
$-f=A^{\prime} D+B^{\prime} C^{\prime} D$
$\boldsymbol{m}=A^{\prime} D+C^{\prime} D$

without don't cares with don't cares

- by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node
$\frac{\text { don't cares can be treated as }}{1 \mathrm{~s} \text { or } 0 \mathrm{~s}}$ 1s or 0s
depending on which is more advantageous

Exercise

\square Minimize the function $F=\Sigma m(0,2,7,8,14,15)+d(3,6,9$, 12, 13)

