CSE 370 Spring 2006 Introduction to Digital Design

Lecture 7: Karnaugh and Beyond

Last Lecture

- Quiz

■ Karnaugh Maps

- K-maps \& Minimization

Today

- Design Examples \& K-maps
- Minimization Algorithm

Administrivia

- Pick up Quiz 1

Average: 9.2/10, Median 10/10

- Lab 3 this week (Verilog!)
- Homework 3 on the web

Quiz Review

Problem 1: -5_{10} as a four bit expression using
a) sign and magnitude
$-5={\underset{q}{q}}_{1012} 1012$
nes
b) ones-complement

$$
\begin{aligned}
5=4+1= & \frac{1012}{\downarrow} \\
& \xrightarrow[210]{2}
\end{aligned}
$$

$$
-5=1010_{2}
$$

c) twos-complement ones comp +1

$$
\begin{array}{r}
10102 \\
+0001 \\
\hline 10112
\end{array}
$$

Quiz Review

$f=A B+B^{\prime} C+A C{ }^{\prime}$

$$
\begin{gathered}
f=\bar{A} \bar{B} C+A \bar{B} \bar{C}+A \bar{B} C+A B \bar{C}+A B C \\
=\sum m(1,4,5,6,7) \\
\uparrow_{\text {minferms }}
\end{gathered}
$$

Quiz Review

$f=A B+B{ }^{\prime} C+A C$ '

b) Product of Sums

$$
\begin{aligned}
& f=(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C}) \\
& f=\pi M(0,2,3)
\end{aligned}
$$

c) Circuit using AND, OR, NOT

Karnaugh Maps

- Last Time 4 literal K-map

Karnaugh Map Don’t Cares

$\square f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$

without don't cares
■f=A'D+C'D \downarrow
with don't cares

Design example: two-bit comparator $\downarrow \downarrow \downarrow$

block diagram and truth table

A	B	C	D	LT	EQ	GT
0	0	0	0	0	1	0

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Design example: two-bit comparator (cont’d)

Design example: two-bit comparator (cont'd)

Design example: 2x2-bit multiplier

block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit " multiplier (cont'd)

Design example: BCD increment by 1
 4 kmaps

Design example: BCD increment by 1 (cont’d)

Definition of terms for twolevel simplification

■ Implicant

- single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
- implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
- prime implicant is essential if it alone covers an element of ON-set
will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential
■ Objective:
- grow implicant into prime implicants (minimize literals per term)
- cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

6 prime implicants:

- $A^{\prime} B^{\prime} D, B C^{\prime}, A C, A^{\prime} C^{\prime} D, A B, B^{\prime} C D$ essential
minimum cover: $\underline{A C}+\underline{B C^{\prime}}+$ $A^{\prime} B^{\prime} D$

Algorithm for two-level simplification

■ Algorithm: minimum sum-of-products expression from a Karnaugh map

- Step 1: choose an element of the ON-set
- Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
E consider top/bottom row, left/right column, and corner adjacencies
■ this forms prime implicants (number of elements always a power of 2)
- Repeat Steps 1 and 2 to find all prime implicants
- Step 3: revisit the 1s in the K-map
mif covered by single prime implicant, it is essential, and participates in final cover
—1s covered by essential prime implicant do not need to be revisited
- Step 4: if there remain 1s not covered by essential prime implicants ■select the smallest number of prime implicants that cover the remaining 1s

Algorithm for two-level simplification (example)

3 primes around $A B^{\prime} C^{\prime} D^{\prime}$

2 primes around $A^{\prime} B^{\prime} D^{\prime}$

2 primes around ABC'D

minimum cover (3 primes)

Activity

■ List all prime implicants for the following K-map:

■ Which are essential prime implicants?
■ What is the minimum cover?

Loose end: POS minimization using k-maps

- Using k-maps for POS minimization

E Encircle the zeros in the map
— Interpret indices complementary to SOP form

$$
F=\left(B^{\prime}+C+D\right)\left(B+C+D^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)
$$

Check using de Morgan's on SOP
$F^{\prime}=B^{\prime} D^{\prime}+B^{\prime} C^{\prime} D+A B C^{\prime}$
$\left(F^{\prime}\right)^{\prime}=\left(B C^{\prime} D^{\prime}+B^{\prime} C^{\prime} D+A B C^{\prime}\right)^{\prime}$
$\left(F^{\prime}\right)^{\prime}=\left(B C^{\prime} D^{\prime}\right)^{\prime}+\left(B^{\prime} C^{\prime} D\right)^{\prime}+\left(A B C^{\prime}\right)^{\prime}$
$F=\left(B^{\prime}+C+D\right)\left(B+C+D^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)$

Implementations of two-level logic

■ Sum-of-products

- AND gates to form product terms (minterms)
- OR gate to form sum

■ Product-of-sums

- OR gates to form sum terms (maxterms)
- AND gates to form product

