
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 8: Introduction to Verilog
Last Lecture

Design Examples a K-maps
Minimization Algorithm

Today
Introduction to Verilog

Administrivia

Homework 3 due Friday

Algorithm for two-level simplification
Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set
Step 2: find "maximal" groupings of 1s and Xs adjacent to that
element

consider top/bottom row, left/right column, and corner
adjacencies
this forms prime implicants (number of elements always a power
of 2)

Repeat Steps 1 and 2 to find all prime implicants
Step 3: revisit the 1s in the K-map

if covered by single prime implicant, it is essential, and
participates in final cover
1s covered by essential prime implicant do not need to be
revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the
remaining 1s

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

3 primes around AB'C'D'

Algorithm for two-level
simplification (example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

Visit All in the On Set?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

0 0

0 1

0 1

1 1
D

A

0 1

0 0

1 1

0 1

B

C

Activity

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

List all prime implicants for the following K-map:

Which are essential prime implicants?

What is the minimum cover?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

Loose end: POS minimization
using k-maps

Using k-maps for POS minimization
Encircle the zeros in the map
Interpret indices complementary to SOP form

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

AB
CD

A

B

D

00 01 11 10

00

01

11

10
C

F = (B’+C+D)(B+C+D’)(A’+B’+C)

Check using de Morgan’s on SOP
F’ = BC’D’+B’C’D+ABC’
(F’)’ = (BC’D’+B’C’D+ABC’)’
(F’)’ = (BC’D’)’+(B’C’D)’+(ABC’)’
F = (B’+C+D)(B+C+D’)(A’+B’+C)

Ways of specifying circuits
Schematics

Structural description
Describe circuit as interconnected elements

Build complex circuits using hierarchy
Large circuits are unreadable

HDLs
Hardware description languages

Not programming languages
Parallel languages tailored to digital design

Synthesize code to produce a circuit

Hardware description languages
(HDLs)

Abel (~1983)
Developed by Data-I/O
Targeted to PLDs
Limited capabilities (can do state machines)

Verilog (~1985)
Developed by Gateway (now part of Cadence)
Similar to C
Moved to public domain in 1990

VHDL (~1987)
DoD sponsored
Similar to Ada

module toplevel(clock,reset);

input clock;
input reset;
reg flop1;
reg flop2;

always @ (posedge reset or posedge clock)
if (reset)

begin
flop1 <= 0;
flop2 <= 1;
end

else
begin
flop1 <= flop2;
flop2 <= flop1;
end

endmodule

Verilog

Verilog versus VHDL

Both “IEEE standard” languages
Most tools support both
Verilog is “simpler”

Less syntax, fewer constructs
VHDL is more structured

Can be better for large, complex systems
Better modularization

HDL
description

“execution”

functional
validation

synthesis circuit

simulation

functional/timing
validation

Simulation versus synthesis
Simulation

“Execute” a design to verify correctness
Synthesis

Generate a netlist from HDL code

Simulation versus synthesis
(con’t)

Simulation
Models what a circuit does

Multiply is “*”, ignoring implementation options
Can include static timing
Allows you to test design options

Synthesis
Converts your code to a netlist

Can simulate synthesized design
Tools map your netlist to hardware

Verilog and VHDL simulate and synthesize
CSE370: Learn simulation
CSE467 (Advanced Digital Design): Learn synthesis

Simulation
You provide an environment

Using non-circuit constructs
Read files, print, control simulation

Using Verilog simulation code
A “test fixture”

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

Note: We will ignore
timing and test benches
until next Verilog lecture

Levels of abstraction
Verilog supports 4 description levels

Switch
Gate
Dataflow
Algorithmic

Can mix & match levels in a design
Designs that combine dataflow and algorithmic
constructs and synthesis are called RTL

Register Transfer Level

structural

behavioral

Structural versus behavioral
Verilog

Structural
Describe explicit circuit elements
Describe explicit connections between elements

Connections between logic gates
Just like schematics, but using text

Behavioral
Describe circuit as algorithms/programs

What a component does
Input/output behavior

Many possible circuits could have same behavior
Different implementations of a Boolean function

Verilog tips
Do not write C-code

Think hardware, not algorithms
Verilog is inherently parallel
Compilers don’t map algorithms to circuits well

Do describe hardware circuits
First draw a dataflow diagram
Then start coding

References
Tutorial and reference manual are found in ActiveHDL
help
And in this week’s reading assignment
“Starter’s Guide to Verilog 2001” by Michael Ciletti

copies for borrowing in hardware lab

// first simple example
module smpl (X,Y,A,B,C);
input A,B,C;
output X,Y;
wire E
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

endmodule

Basic building blocks: Modules
Instanced into a design

Never called
Illegal to nest module defs.
Modules execute in parallel
Names are case sensitive
// for comments
Name can’t begin with a
number
Use wires for connections
and, or, not are keywords
All keywords are lower case
Gate declarations (and, or, etc)

List outputs first
Inputs second

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

Modules are circuit components

Module has ports
External connections
A,B,C,X,Y in example

Port types
input
output
inout (tristate)

Use assign statements for
Boolean expressions

and ⇔ &
or ⇔ |
not ⇔ ~

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
input A,B,C;
output X,Y;
assign X = (A&B)|~C;
assign Y = ~C;

endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2
module xor_gate (out,a,b);
input a,b;
output out;
wire abar, bbar, t1, t2;
not inva (abar,a);
not invb (bbar,b);
and and1 (t1,abar,b);
and and2 (t2,bbar,a);
or or1 (out,t1,t2);

endmodule

Structural Verilog

8 basic gates (keywords):
and, or, nand, nor
buf, not, xor, xnor

bbar

t2

t1
abar

b
invb a

and2

a
inva b

and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;

endmodule

A
B

Cin Cout
SumAdder

Behavioral Verilog
Describe circuit behavior

Not implementation

{Cout, Sum} is a concatenation

Behavioral 4-bit adder
module add4 (SUM, OVER, A, B);
input [3:0] A;
input [3:0] B;
output [3:0] SUM;
output OVER;
assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];

endmodule

“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

Can also write “[0:3] A”
Bit 0 is the MSB
Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

Data types
Values on a wire

0, 1, x (don’t care), z (tristate or unconnected)
Vectors

A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]
Unsigned integer value
Indices must be constants

Concatenating bits/vectors
e.g. sign extend

B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
B[7:0] = {4{A[3]}, A[3:0]};

Style: Use a[7:0] = b[7:0] + c;
Not a = b + c;

Legal syntax: C = &A[6:7]; // logical and of bits 6
and 7 of A

Numbers
Format: <sign><size><base format><number>
14

Decimal number
–4’b11

4-bit 2’s complement binary of 0011 (is 1101)
12’b0000_0100_0110

12 bit binary number (_ is ignored)
3’h046

3-digit (12-bit) hexadecimal number
Verilog values are unsigned

C[4:0] = A[3:0] + B[3:0];
if A = 0110 (6) and B = 1010(–6), then C = 10000
(not 00000)
B is zero-padded, not sign-extended

Operators

Similar to C operators

assign A = X | (Y & ~Z);
assign B[3:0] = 4'b01XX;
assign C[15:0] = 4'h00ff;
assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

multiple assignment (concatenation)Gate delay (used by simulator)

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Continuous assignment
Assignment is continuously evaluated

Corresponds to a logic gate
Assignments execute in parallel

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);

endmodule

Example: A comparator

Top-down design and bottom-up design are both okay
⇒ module ordering doesn’t matter
⇒ because modules execute in parallel

// Make a 4-bit comparator from 4 1-bit comparators
module Compare4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;
Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3],);
assign Equal = (e0 & e1 & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |

(Al1 & e3 & e2) |
(Al0 & e3 & e2 & e1));

assign Blarger = (~Alarger & ~Equal);
endmodule

Comparator example (con’t)

module and_gate (out, in1, in2);
input in1, in2;
output out;
assign out = myfunction(in1, in2);
function myfunction;
input in1, in2;
begin
myfunction = in1 & in2;

end
endfunction

endmodule

Benefit:
Functions force a result
⇒ Compiler will fail if function

does not generate a result

Functions
Use functions for complex combinational logic

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Sequential Verilog-- Blocking
and non-blocking assignments

Blocking assignments (Q = A)
Variable is assigned immediately

New value is used by subsequent statements
Non-blocking assignments (Q <= A)

Variable is assigned after all scheduled statements are
executed

Value to be assigned is computed but saved for later
Usual use: Register assignment

Registers simultaneously take new values after the clock
edge

Example: Swap

reg B, C, D;
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

reg B, C, D;
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

Sequential Verilog--
Assignments- watch out!

Blocking versus Non-blocking

Summary of two-level
combinational-logic

Logic functions and truth tables
AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
Minimal set

Axioms and theorems of Boolean algebra
Proofs by re-writing
Proofs by perfect induction (fill in truth table)

Gate logic
Networks of Boolean functions
NAND/NOR conversion and de Morgan’s theorem

Canonical forms
Two-level forms
Incompletely specified functions (don’t cares)

Simplification
Two-level simplification (K-maps)

Solving combinational design
problems

Step 1: Understand the problem
Identify the inputs and outputs
Draw a truth table

Step 2: Simplify the logic
Draw a K-map
Write a simplified Boolean expression

SOP or POS
Use don’t cares

Step 3: Implement the design
Logic gates and/or Verilog

