
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 9: Multilevel Logic
Last Lecture

Introduction to Verilog

Today
Multilevel Logic
Hazards

Administrivia
Hand in Homework #3
Homework #3 posted this afternoon
Lab #4 posted.

A note from Adrienne:

When it says write an expression in canonical minterm
form or canonical maxterm form, unless it explicitly says
to use the shorthand m and M notation, please write a
Boolean expression. (Not deducted for in HW#2-#3 or
on the Quiz.)

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Sequential Verilog-- Blocking
and non-blocking assignments

Blocking assignments (Q = A)
Variable is assigned immediately

New value is used by subsequent statements
Non-blocking assignments (Q <= A)

Variable is assigned after all scheduled statements are
executed

Value to be assigned is computed but saved for later
Usual use: Register assignment

Registers simultaneously take new values after the clock
edge

Example: Swap

reg B, C, D;
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

reg B, C, D;
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

Sequential Verilog--
Assignments- watch out!

Blocking versus Non-blocking

F
A B C D

time

Timing diagrams
“Sideways” truth tables

Show time-response of circuits
Real gates have real delays

Example: A' • A = 0
Delays cause transient F=1

Some texts
call timing
diagrams

“waveforms”

Example: F=A+BC in 2-level
logic

minimized product-of-sums

F1

F2

F3

B

C

A

F4

canonical product-of-sums

minimized sum-of-products

canonical sum-of-products

Timing diagram for F = A + BC
Time waveforms for F1 – F4 are identical

Except for timing hazards (glitches)
More on this shortly...

Multilevel logic
Basic idea: Simplify logic using >2 gate levels

Time–space (speed versus gate count) tradeoff
Two-level logic usually

Has smaller delays (faster circuits)
But more gates and more wires (more circuit area)
Sometimes has large fan-ins (slow)

Easier to eliminate hazards
Multilevel logic usually

Has less gates (smaller circuits)
But can be slower (more gate delays)

Harder to eliminate hazards

Multilevel logic example
Function X

SOP: X = ADF + AEF + BDF + BEF + CDF + CEF + G
X is minimized!
Six 3-input ANDs; one 7-input OR; 25 wires

Multilevel: X = (A+B+C)(D+E)F + G
Factored form
One 3-input OR, two 2-input OR's, one 3-input AND;
10 wires

A
B
C

D
E

F
G

X

3-level circuit
X = (A+B+C)(D+E)F + G

Multilevel NAND/NAND
conversion

F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C
D

B

B
C'

F

Multilevel NOR/NOR conversion
F = A(B+CD) + BC'

original
AND-OR
network

introduce bubbles
(conserve inversions)

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
C'

F

A

C

D
B

B

C'

F

Generic multilevel conversion
F = ABC + BC + D = AX + X + D

D'

A

X'
B
C

F

D'

A

X

B
C

F
X'

(a)

(c)

(b)

(d)

A

X
B
C
D

F

original circuit

A

X

B
C

D

F

add double bubbles at inputs

distribute bubbles
some mismatches insert inverters to fix mismatches

AND-OR-Invert and OR-AND-
Invert blocks

• AOI and OAI are dense 3-level building blocks
– 2x2 AOI uses only 8 transistors
– Minimal delay

&

&
+2x2 AOI

symbol

&

&
+3x2 AOI

symbol
AND OR Invert

logical concept

A
B
C
D

F

Using AOI and OAI blocks
Approach

Start by finding F’
If using AOI, find F’ in minimized SOP form
If using OAI, find F’ in minimized POS form

Form AOI as (F’)’
Example: F = A'B + AB'

SOP form: F' = A'B' + AB
AOI form: F = (A'B' + AB)'

0 1

1 0

A

B

&

&
+

A'
B'
A
B

F

Example: AOI and OAI

OAI form – Use POS
F' = (B'+C)(A'+C)(A'+B')
F = [(B'+C)(A'+C)(A'+B')]'

B

0 1 1 1

0 0 1 0

A

C

&

&
+&

A'
B'
A'
C
B'
C

F

+

+
&+

B'
C
A'
C
A'
B'

F

AOI form – Use SOP

F' = A'B' + A'C + B'C
F = (A'B' + A'C + B'C)'

Issues with multilevel design
No global definition of “optimal” multilevel circuit

Optimality depends on user-defined goals
Synthesize an implementation that meets design
goals

Synthesis requires CAD-tool help
No simple hand methods like K-maps
CAD tools manipulate Boolean expressions

Factoring, decomposition, etc.
Covered in more detail in CSE467

Multilevel logic summary
Advantages over 2-level logic

Smaller circuits
Reduced fan-in
Less wires

Disadvantages w.r.t 2-level logic
More difficult design
Less powerful optimizing tools
Dynamic hazards

What you should know for CSE370
The basic multilevel idea
Multilevel NAND/NAND and NOR/NOR conversion
AOI gates

Hazards/glitches
Hazards/glitches: Undesired output switching

Occurs when different pathways have different delays
Wastes power; causes circuit noise
Dangerous if logic makes a decision while output is
unstable
Dangerous if using asynchronous circuits

Solutions
Design hazard-free circuits

Difficult when logic is multilevel
Wait until signals are stable
Use synchronous circuits

1
0 0

1 1
0 0

1 1
0 0

0
1 1

Types of hazards
Static 1-hazard

Output should stay logic 1
Gate delays cause brief glitch to
logic 0

Static 0-hazard
Output should stay logic 0
Gate delays cause brief glitch to
logic 1

Dynamic hazards
Output should toggle cleanly
Gate delays cause multiple
transitions

Static hazards

Occur when a literal and its complement momentarily
assume the same value

Through different paths with different delays
Causes an (ideally) static output to glitch

F

A

B

S

S'

F

static-0 hazard

A
S

B

S'

A multiplexer

Dynamic hazards
Occur when a literal assumes multiple values

Through different paths with different delays
Causes an output to toggle multiple times

B2

A

C

B1

F

Dynamic hazard

B3

A

C

B

F

1

23

Dynamic hazards

Eliminating static hazards
In 2-level logic circuits

Assuming single-bit changes
Key idea: Glitches happen when a changing input spans
separate k-map encirclements

Example: 1101 to 0101 change can cause a static-1
glitch

A
C'

A'
D

F

0 0 1 1

1 1 1 1

1 1 0 0

0 0 0 0

AB
CD

B

D

00 01 11 10

00

01

11

10
C

A

F = AC' + A'D

Eliminating static hazards
(con’t)

Solution: Add redundant k-map encirclements
Ensure that all single-bit changes are covered
First eliminate static-1 hazards: Use SOP form

A
C'

A'
D F

0 0 1 1

1 1 1 1

1 1 0 0

0 0 0 0

AB
CD

B

D

00 01 11 10

00

01

11

10
C

A

C'
D

F = AC' + A'D + C'D

Summary of hazards
We can eliminate static hazards in 2-level logic

For single-bit changes
Eliminating static hazards also eliminates dynamic
hazards

Hazards are a difficult problem
Multiple-bit changes in 2-level logic are hard
Static hazards in multilevel logic are harder
Dynamic hazards in multilevel logic are harder yet

CAD tools and simulation/testing are indispensable
Test vectors probe a design for hazards

