CSE 370 Spring 2006 Introduction to Digital Design

Lecture 11: PLAs and PALs

Last Lecture

- Mux/Demux

Today

- PLAs and PALs

Programmable logic (PLAs \& PALs)

■ Concept: Large array of uncommitted AND/OR gates

- Actually NAND/NOR gates
- You program the array by making or breaking connections
- Programmable block for sum-of-products logic

Administrivia

-HW 4 due Friday

Programming the wire connections

■ Fuse: Comes connected; break unwanted connections
\square Anti-fuse: Comes disconnected; make wanted

Short-hand notation

■ Draw multiple wires as a single wire or bus
$■ \times$ signifies a connection

Before Programming

After Programming

Sharing product terms

■ Example: $\quad \mathrm{FO}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}$

$$
\begin{aligned}
& \mathrm{F} 1=A C^{\prime}+A B \\
& F 2=B^{\prime} C^{\prime}+A B \\
& F 3=B^{\prime} C+A
\end{aligned}
$$

- Personality matrix:

product term	inputs			outputs				
	A	B	C	F0	F1	F2	F3	
AB	1	1	-	0	1	1	0	
B'C	-	0	1	0	0	0	1	
AC'	1	-	0		1	0	0	Reuse
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}$	-	0	0		0	1	0	Reuse
A	1	-	-	1	0	0	1	terms

Programming the wire connections

■ Fuse: Comes connected; break unwanted connections
\square Anti-fuse: Comes disconnected; make wanted connections

F0 = A + B'C'
$\mathrm{F} 1=\mathrm{AC}{ }^{\prime}+\mathrm{AB}$
F2 $=B^{\prime} C^{\prime}+A B$
$\mathrm{F} 3=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}$

PLA example

$\mathrm{F} 1=\mathrm{ABC}$
$F 2=A+B+C$
F3 = A' B' C
F4 $=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
F5 = A xor B xor C
F6 = A xnor B xnor C

A	B	C	F1	F2	F3	F4	F5	F6
0	0	0	0	0	1	1	0	0

0	0	1	0	1	0	1	1	1

$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$

0	1	1	0	1	0	1	0	0

$\begin{array}{lllllllll}1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}$

1	0	1	0	1	0	1	0	0

1	1	0	0	1	0	1	0	0

1	1	1	1	1	0	0	1	1

Think of as a memory-address decoder

PLAs versus PALs

■ We've been looking at PLAs

- Fully programmable AND / OR arrays
Can share AND terms
- Programmable array logic (PAL)
- Programmable AND array
- OR array is prewired

No sharing ANDs
Cheaper and faster than
PLAs

Example: BCD to Gray code converter

A	B	C	D	W	X	Y	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	1	1	1	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	1
1	0	0	1	1	0	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

K-map for W

Example (con't): Wire a PLA

Minimized functions:
$W=A+B C+B D$
$X=B C^{\prime}$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D$ $+A D^{\prime}+B^{\prime} C D^{\prime}$

Example: Wire a PAL

```
Minimized functions:
    W = A + BC + BD
    X = BC'
    Y = B +C
    Z = A'B'C'D + BCD \swarrow
        + AD' + B'CD'
```

What do we do with the unused AND gates?

Compare implementations

- PLA:
- No shared logic terms in this example <
- 10 decoded functions (10 AND gates)
- PAL:

E Z requires 4 product terms -16 decoded functions (16 AND gates)
56 unused AND gates \&
\square This decoder is a poor candidate for PLAs/PALs

- 10 of 16 possible inputs are decoded
- No sharing among AND terms
- Better option?
- Yes - a ROM

Read-only memories (ROMs)

■ Two dimensional array of stored 1 s and 0 s
E Input is an address \Rightarrow ROM decodes all possible input addresses
E Stored row entry is called a "word"
— ROM output is the decoded word

Two-level combinational logic using a ROM

■ Use a ROM to directly store a truth table
E No need to minimize logic
-
Example: $\quad \mathrm{FO}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB} B^{\prime} \mathrm{C}$
$F 1=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B C$
$F 2=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}$
$F 3=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C '$

You specify whether to store 1 or 0 in each location in the ROM

ROMs versus PLAs/PALs

■ ROMs

- Benefits

Quick to design, simple, dense

- Limitations
- Size doubles for each additional input

Ean't exploit don't cares
■ PLAs/PALs

- Benefits

Logic minimization reduces size

- Limitations
-PAL OR-plane has hard-wired fan-in
■ Another answer: Field programmable gate arrays
- Learn about in 467

Loose end: Tristates

$$
0,1, Z
$$

■ Tristate buffers have a control input
E Enabled: Buffer works normally

- Disabled: Buffer output is disconnected

2:1 Tristate Mux \quad module muxtri (In1, In2, Sel out)
input In1,In2,Sel; -
output OUT;
tri OUT;
bufif1 (OUT, In1,Sel)
bufif0 (OUT,In2,Sel);
endmodule

0,1

Formalize the problem

■ Truth table

- Many don't cares
- Choose implementation target
- If ROM, we are done
- Don't cares imply

PAL/PLA may be good choice
■ Implement design

- Minimize the logic
- Map into PAL/PLA

Example: BCD to 7-segment display controller

■ The problem
E Input is a 4-bit BCD digit (A, B, C, D)

- Need signals to drive a display (7 outputs C0 - C6)

Sum-of-products implementation

■ 15 unique product terms if we minimize individually

Better SOP implementation

■ Can do better than 15 product terms

- Share terms among outputs \Rightarrow only 9 unique product terms
-Each term not necessarily minimized

$C O=A+B D+C+B^{\prime} D^{\prime}$ $C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B^{\prime} D+B^{\prime} C$
$\mathrm{C} 4=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD}^{\prime}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$

$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$ $C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$
$C 3=B^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime}$
$C 4=B^{\prime} D^{\prime}+B C D^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

Example: Logical function unit

$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$
$C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$ $C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D^{\prime}$ $C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime}$ $C 4=B^{\prime} D^{\prime}+B C D^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

■ Multipurpose functional block

- 3 control inputs (C) specify function
-2 data inputs (operands) A and B

- 1 output (same bit-width as input operands)

C0	C 1	C 2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	3 control inputs: C0, C1, C2
0	1	0	$(\mathrm{~A} \cdot \mathrm{~B})^{\prime}$	logical NAND	2 data inputs: A, B
0	1	1	A xor B	logical xor	1 output: F
1	0	0	A \times nor B	logical xnor	
1	0	1	A• B	logical AND	
1	1	0	$(\mathrm{~A}+\mathrm{B})^{\prime}$	logical NOR	
1	1	1	0	always 0	

Formalize the problem and

solve

I mplementation choice: multiplexer with discrete gates

PAL Feature: Tri-stated outputs

PAL Feature: Individually Tristated outputs

Pal Feature: Feedback terms

