
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 12: Adders

Last Lecture
PLAs and PALs

Today
Adders

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Binary full adder
1-bit full adder

Computes sum, carry-out
Carry-in allows cascaded 
adders

Sum = Cin xor A xor B
Cout = ACin + BCin + AB

A
B

Cin Cout
SumFull

Adder

Cin
Sum

B
A

33

XOR
32

XOR

A
B

Cin
A

Cout

Cin
B

13

AND2

12

AND2

14

OR3

11

AND2

Multilevel logic
Slower
Less gates

2 XORs, 2 ANDs, 1 OR

Full adder: Alternative Implementation

Sum = (A ⊕ B) ⊕ Cin

Cout = ACin + BCin + AB
= (A ⊕ B)Cin + AB

A

B

A xor B

Cin

A xor B xor Cin
Sum

Cout (A xor B)CinAB
Sum

Cout

Half Adder

Sum

Cout

Half Adder

A B Cin S Cout Cout
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 1 1

2-bit ripple-carry adder

A1 B1

CoutCin

Sum1

A
B

Cin
A

Cout

Cin
B

13

AND2

12

AND2

14

OR3

11

AND2

Cin
Sum

B
A

33

XOR
32

XOR

A

Sum

CoutCin

B

1-Bit Adder
A2 B2

Sum2

CoutCin0

Overflow



A B

Cout

Sum

Cin

0 1

0 Add
1 Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

4-bit ripple-carry adder/subtractor
Circuit adds or subtracts

2s complement:  A – B = A + (–B) = A + B' + 1

Note: Can replace 2:1 
muxes with XOR gates

Cin
Sum

B
A

33

XOR
32

XOR

A
B

Cin
A

Cout

Cin
B

13

AND2

12

AND2

14

OR3

11

AND2

Problem: Ripple-carry delay
Carry propagation limits adder speed

@0
@0

Cout takes two gate delays
Cin arrives late

A0
B0

Cin

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

@0
@2N

@0
@2N

@0
@0

@2N @2N+1

@2N+2

T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

Ripple-carry adder timing 
diagram

Critical delay
Carry propagation
1111 + 0001 = 10000 is worst case

A0
B0

Cin
S0 @2

A1
B1

C1 @3
S1 @4

A2
B2

C2 @3
S2 @4

A3
B3

C3 @3
S3 @4

C4 @3 C4 @3

One solution: Carry lookahead 
logic

Compute all the carries in parallel
Derive carries from the data inputs

Not from intermediate carries 
Use two-level logic

Compute all sums in parallel
Cascade simple adders to make large 
adders
Speed improvement

16-bit ripple-carry: ~32 gate delays
16-bit carry-lookahead: ~8 gate 
delays

Issues
Complex combinational logic



Full adder again

A

B

A xor B

Cin

A xor B xor Cin
Sum

Cout Cin(A xor B)AB
Sum

Cout

Half Adder

Sum

Cout

Half Adder

Gi

Pi

Ci+1
Ci

Ai
Bi

Ai
Bi

Si

40

OR2
37

AND2

39

AND2

36

XOR

38

XOR

Carry-lookahead logic
Carry generate: Gi = AiBi

Generate carry when A = B = 1
Carry propagate: Pi = Ai xor Bi

Propagate carry-in to carry-out when (A xor B) = 1
Sum and Cout in terms of generate/propagate:

Si = Ai xor Bi xor Ci
= Pi xor Ci

Ci+1= AiBi + Ci(Ai xor Bi)
= Gi + CiPi

Carry-lookahead logic (cont’d)

Re-express the carry logic in terms of G and P
C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + 
P3P2P1P0C0

Implement each carry equation with two-level logic
Derive intermediate results directly from inputs

Rather than from carries
Allows "sum" computations to proceed in parallel

C1

C0

C0

P0

P0

G0

G0

P1

P1

G1

C2

C0
P0

G0
P1

P1

G1
P2

P2

P2

G2

C3

G3

C0
P0

G0
P1

P1

G1
P2

P2

P2

G2
P3

P3

P3

P3

C4

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

Logic complexity 
increases with 

adder size

Implementing the carry-
lookahead logic



Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@4

@5@3

@0
C16

A[15-12] B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

4 4

4

P G

4-bit Adder

Cascaded carry-lookahead 
adder

4 four-bit adders with internal carry lookahead
Second level lookahead extends adder to 16 bits

4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

0C8

1C8

five
2:1 muxes

01010101

adder 
high

adder
low

01

C8 S7 S6 S5 S4 S3 S2 S1 S0

Another solution: Carry-select 
adder

Redundant hardware speeds carry calculation
Compute two high-order sums while waiting for carry-
in (C4)
Select correct high-order sum after receiving C4

4-bit adder
[7:4]

We've finished combinational 
logic...

What you should know
Twos complement arithmetic
Truth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers
PLAs/PALs
ROMs
Adders

Sequential versus 
combinational

B

A C

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Observe C again

Combinational: C will stay the same
Sequential: C may be different



Sequential logic
Two types

Synchronous = clocked
Asynchronous = self-timed

Has state
State = memory

Employs feedback
Assumes steady-state signals

Signals are valid after they have settled
State elements hold their settled output 
values

Sequential versus 
combinational (again)

Combinational systems are memoryless
Outputs depend only on the present inputs 

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback

Synchronous sequential systems
Memory holds a system’s state

Changes in state occur at specific times
A periodic signal times or clocks the state changes 
The clock period is the time between state changes

period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth

B

A C

clock
State changes occur 

at rising edge of clock

clock

Steady-state abstraction
Outputs retain their settled values

The clock period must be long enough for all voltages 
to settle to a steady state before the next state 
change

B

A C

clock

clock

C

Settled value

Clock hides transient 
behavior



Example: A sequential system

Door combination lock
Enter 3 numbers in sequence and the door opens
If there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset
Outputs: Door open/close
Memory: Must remember the combination


