CSE 370 Spring 2006 Introduction to Digital Design

Lecture 12: Adders

Last Lecture

- PLAs and PALs

Today

- Adders

Binary full adder

- 1-bit full adder

- Computes sum, carry-out - Carry-in allows cascaded adders
- Sum = Cin xor A xor B
n Cout $=\mathrm{ACin}+\mathrm{BCin}+\mathrm{AB}$

Full adder: Alternative Implementation
■ Multilevel logic
ESlower
n Less gates

- 2 XORs, 2 ANDs, 1 OR

Sum $=(A \oplus B) \oplus C i n$
Cout $=A C i n+B C i n+A B$
$=(A \oplus B) C i n+A B$

A	B	$\mathrm{C}_{\text {in }}$	S	$\mathrm{C}_{\text {out }}$	$\mathrm{C}_{\text {out }}$
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	1	1

2-bit ripple-carry adder

4-bit ripple-carry adder/subtractor

■ Circuit adds or subtracts

- 2 s complement: $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})=\mathrm{A}+\mathrm{B}^{\prime}+1$

Ripple-carry adder timing diagram

■ Critical delay

- Carry propagation
- $1111+0001=10000$ is worst case

Problem: Ripple-carry delay

■ Carry propagation limits adder speed

One solution: Carry lookahead

 logic■ Compute all the carries in parallel

- Derive carries from the data inputs [Not from intermediate carries
EUse two-level logic
- Compute all sums in parallel

■ Cascade simple adders to make large adders
■ Speed improvement
—16-bit ripple-carry: ~ 32 gate delays
—16-bit carry-lookahead: ~ 8 gate delays

■ Issues
■ Complex combinational logic

Full adder again

Carry-lookahead logic

■ Carry generate: $\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}$

- Generate carry when $A=B=1$

■ Carry propagate: $P_{i}=A_{i}$ xor B_{i}
— Propagate carry-in to carry-out when (A xor B) $=1$
\square Sum and Cout in terms of generate/propagate:

■ $\mathrm{S}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}$ xor B_{i} xor C_{i} $=P_{i}$ xor C_{i}

- $C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i}\right.$ xor $\left.B_{i}\right)$
$=G_{i}+C_{i} P_{i}$

Carry-lookahead logic (cont'd)

■ Re-express the carry logic in terms of G and P

- $\mathrm{C}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{0}$
- $\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
- $\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
- $\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{C}_{3}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{2}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{G}_{1}+\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{G}_{0}+$ $\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
- Implement each carry equation with two-level logic
- Derive intermediate results directly from inputs
-Rather than from carries
— Allows "sum" computations to proceed in parallel

Implementing the carrylookahead logic

Logic complexity increases with adder size

Cascaded carry-lookahead adder

$\square 4$ four-bit adders with internal carry lookahead

- Second level lookahead extends adder to 16 bits

Another solution: Carry-select adder

■ Redundant hardware speeds carry calculation
E Compute two high-order sums while waiting for carryin (C4)

- Select correct high-order sum after receiving C4

We've finished combinational logic...

- What you should know
- Twos complement arithmetic
- Truth tables
- Basic logic gates
- Schematic diagrams
- Timing diagrams
- Minterm and maxterm expansions (canonical, minimized)
- de Morgan's theorem
- AND/OR to NAND/NOR logic conversion
- K-maps, logic minimization, don't cares
- Multiplexers/demultiplexers
- PLAs/PALs
- ROMs
- Adders

Sequential versus combinational

Apply fixed inputs A, B
Wait for clock edge Observe C
Wait for another clock edge
Observe C again

Combinational: C will stay the same
Sequential: C may be different

Sequential logic

- Two types
- Synchronous = clocked
- Asynchronous = self-timed
- Has state

E State = memory
■ Employs feedback
■ Assumes steady-state signals

- Signals are valid after they have settled

E State elements hold their settled output values

Sequential versus
 combinational (again)
 - Combinational systems are memoryless

E Outputs depend only on the present inputs

■ Sequential systems have memory
EOutputs depend on the present and the previous inputs
Inputs

Synchronous sequential systems

■ Memory holds a system's state

- Changes in state occur at specific times
- A periodic signal times or clocks the state changes
- The clock period is the time between state changes

Steady-state abstraction

■ Outputs retain their settled values

- The clock period must be long enough for all voltages to settle to a steady state before the next state change

Clock hides transient
behavior
clock
C

Example: A sequential system

■ Door combination lock

- Enter 3 numbers in sequence and the door opens

If there is an error the lock must be reset

- After the door opens the lock must be reset
- Inputs: Sequence of numbers, reset
- Outputs: Door open/close
- Memory: Must remember the combination

