
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 12: Adders

Last Lecture
PLAs and PALs

Today
Adders

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
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1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Binary full adder
1-bit full adder

Computes sum, carry-out
Carry-in allows cascaded 
adders

Sum = Cin xor A xor B
Cout = ACin + BCin + AB
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Multilevel logic
Slower
Less gates

2 XORs, 2 ANDs, 1 OR

Full adder: Alternative Implementation

Sum = (A ⊕ B) ⊕ Cin

Cout = ACin + BCin + AB
= (A ⊕ B)Cin + AB
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1 1 0 0 1 1
1 1 1 1 1 1

2-bit ripple-carry adder
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4-bit ripple-carry adder/subtractor
Circuit adds or subtracts

2s complement:  A – B = A + (–B) = A + B' + 1

Note: Can replace 2:1 
muxes with XOR gates
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Problem: Ripple-carry delay
Carry propagation limits adder speed
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Cout takes two gate delays
Cin arrives late
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Ripple-carry adder timing 
diagram

Critical delay
Carry propagation
1111 + 0001 = 10000 is worst case
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One solution: Carry lookahead 
logic

Compute all the carries in parallel
Derive carries from the data inputs

Not from intermediate carries 
Use two-level logic

Compute all sums in parallel
Cascade simple adders to make large 
adders
Speed improvement

16-bit ripple-carry: ~32 gate delays
16-bit carry-lookahead: ~8 gate 
delays

Issues
Complex combinational logic



Full adder again
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Carry-lookahead logic
Carry generate: Gi = AiBi

Generate carry when A = B = 1
Carry propagate: Pi = Ai xor Bi

Propagate carry-in to carry-out when (A xor B) = 1
Sum and Cout in terms of generate/propagate:

Si = Ai xor Bi xor Ci
= Pi xor Ci

Ci+1= AiBi + Ci(Ai xor Bi)
= Gi + CiPi

Carry-lookahead logic (cont’d)

Re-express the carry logic in terms of G and P
C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + 
P3P2P1P0C0

Implement each carry equation with two-level logic
Derive intermediate results directly from inputs

Rather than from carries
Allows "sum" computations to proceed in parallel
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Logic complexity 
increases with 

adder size

Implementing the carry-
lookahead logic



Lookahead Carry Unit
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Cascaded carry-lookahead 
adder

4 four-bit adders with internal carry lookahead
Second level lookahead extends adder to 16 bits
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Another solution: Carry-select 
adder

Redundant hardware speeds carry calculation
Compute two high-order sums while waiting for carry-
in (C4)
Select correct high-order sum after receiving C4

4-bit adder
[7:4]

We've finished combinational 
logic...

What you should know
Twos complement arithmetic
Truth tables
Basic logic gates
Schematic diagrams
Timing diagrams
Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem
AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers
PLAs/PALs
ROMs
Adders

Sequential versus 
combinational

B

A C

clock

Apply fixed inputs A, B
Wait for clock edge

Observe C
Wait for another clock edge

Observe C again

Combinational: C will stay the same
Sequential: C may be different



Sequential logic
Two types

Synchronous = clocked
Asynchronous = self-timed

Has state
State = memory

Employs feedback
Assumes steady-state signals

Signals are valid after they have settled
State elements hold their settled output 
values

Sequential versus 
combinational (again)

Combinational systems are memoryless
Outputs depend only on the present inputs 

Sequential systems have memory
Outputs depend on the present and the previous inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback

Synchronous sequential systems
Memory holds a system’s state

Changes in state occur at specific times
A periodic signal times or clocks the state changes 
The clock period is the time between state changes

period

duty cycle = pulsewidth/period 
(here it is 50%)

pulsewidth
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at rising edge of clock

clock

Steady-state abstraction
Outputs retain their settled values

The clock period must be long enough for all voltages 
to settle to a steady state before the next state 
change
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Settled value

Clock hides transient 
behavior



Example: A sequential system

Door combination lock
Enter 3 numbers in sequence and the door opens
If there is an error the lock must be reset
After the door opens the lock must be reset
Inputs: Sequence of numbers, reset
Outputs: Door open/close
Memory: Must remember the combination


